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ABSTRACT

Genetic variants are necessary for evolution to happen in nature. Through DNA

mutations, one can gain or lose the ability to adapt to the environment and compete with

other species. In humans, these variants often may cause diseases like Amyotrophic

Lateral Sclerosis (ALS) or modify the individual metabolism for certain nutrients and

medicines. Missense variants are a subtype of genetic variants that cause an amino acid

change in the resulting protein sequence. These variants may incur a protein

gain-of-function (GOF), where it may perform its original function in an augmented

way or even gain new capabilities. Alternatively, loss-of-function (LOF) variants may

cause the protein to be incapable of performing its original role or, for example, lose the

capability of being regulated.

This work is based on a dataset containing LOF, GOF, and Neutral variants

curated by Mendelics Análise Genômica S.A, one of Latin America's largest genetic

diagnostics laboratories. This Gain and Loss of Function Dataset (GLOF) is made

publicly available1 and corresponds to the first dataset of LOF and GOF variants

annotated by specialists in the literature. With this dataset, we propose a method that

addresses the problem of variant effect prediction, providing an end-to-end approach

that reaches state-of-the-art performance, surpassing alternatives that require complex

feature engineering and multi-sequence alignment, which is more complex and slower

and may not be possible for less well-studied proteins. Moreover, this work uses this

dataset to carry out several computational experiments, including the creation of a

Random Forest model2 that uses original and mutated protein sequences embeddings to

predict LOF, GOF, and Neutral variant effect, where an F1-score of 0.76, 0.78, and 0.93,

respectively, is reported on the test set, placing a potential new state-of-the-art model for

variant effect prediction.

Keywords: deep learning, molecular modeling, protein language models,

gain-of-function variant prediction, loss-of-function variant prediction

1 https://www.kaggle.com/datasets/maricatovictor/loss-and-gain-of-function-variants
2 https://github.com/victormaricato/lof-gof-predictor

https://www.kaggle.com/datasets/maricatovictor/loss-and-gain-of-function-variants
https://github.com/victormaricato/lof-gof-predictor


RESUMO

Variantes genéticas são necessárias para que a evolução aconteça na natureza.

Através de mutações no DNA, um indivíduo pode ganhar ou perder a capacidade de se

adaptar ao ambiente e competir com outras espécies. Em humanos, essas variantes

frequentemente podem causar doenças como a Esclerose Lateral Amiotrófica (ELA) ou

modificar o metabolismo individual para certos nutrientes e medicamentos. Variantes

missense são um subtipo de variante genética que causam uma mudança de aminoácido

na sequência protéica resultante. Essas variantes podem ocasionar em um ganho de

função (gain-of-function, GOF) da proteína, em que ela pode realizar sua função

original de forma aumentada ou até mesmo fazê-la ganhar novas capacidades.

Alternativamente, variantes de perda de função (loss-of -function, LOF) podem fazer

com que a proteína seja incapaz de desempenhar seu papel original ou, por exemplo,

perder a capacidade de ser regulada.

Este trabalho é baseado em um dataset contendo variantes LOF, GOF e Neutras

curadas pela Mendelics Análise Genômica S.A, um dos maiores laboratórios de

diagnóstico genético da América Latina. Este dataset, nomeado Gain and Loss of

Function Dataset (GLOF) foi disponibilizado publicamente1, sendo o primeiro conjunto

de variantes LOF e GOF anotadas disponível na literatura. Com este dataset, é proposto

um método que aborda o problema de predição de efeito de variantes, fornecendo uma

abordagem de ponta a ponta que alcança um desempenho correspondente ao estado da

arte, superando alternativas que requerem engenharia de características complexas e

alinhamento de múltiplas sequências, ainda mais complexo, mais lento e que pode não

ser possível para proteínas menos estudadas. Além disso, este trabalho utiliza este

conjunto de dados para realizar vários experimentos computacionais, incluindo a

criação de um modelo2 Random Forest que usa embeddings de sequências proteicas

originais e mutadas para prever o efeito de variantes LOF, GOF e Neutras, em que um

F1-score de 0,76, 0,78 e 0,93, respectivamente, é relatado no conjunto de teste,

estabelecendo um potencial novo modelo de estado da arte para predição de efeito de

variantes.

1 https://www.kaggle.com/datasets/maricatovictor/loss-and-gain-of-function-variants
2 https://github.com/victormaricato/lof-gof-predictor

https://www.kaggle.com/datasets/maricatovictor/loss-and-gain-of-function-variants
https://github.com/victormaricato/lof-gof-predictor


Palavras-chave: aprendizado profundo, modelagem molecular, modelos de

linguagem de proteínas, previsão de variantes de ganho de função, previsão de variantes

de perda de função.



Table of Contents

1 Introduction 21
1.1 Motivation 21
1.2 Objective 22
1.3 Contributions 22
1.4 Structure 23

2 Background Knowledge 24
2.1 Genetics 24
2.2 Amino acids 25
2.3 Genetic Variants 26
2.4 Missense Variants 27
2.5 Biobanks and Genomic Datasets 29
2.6 Protein Structure and Function 30
2.7 Loss-of-function and Gain-of-functions Variants 31
2.8 Deep Learning 32
2.9 Neural Network Architectures 34
2.10 Representation Learning 35
2.11 Transfer Learning 36
2.12 Transformers 37
2.13 Foundational Models 40
2.14 Non-neural Machine Learning Algorithms 41
2.15 Multiple Sequence Alignment (MSA) 43
2.16 Evolutionary Scaled Model 44
2.17 Related Works 47

3 Experimental Study 51
3.1 Computational Environment 51
3.2 Dataset Annotation 51
3.3 Dataset 51
3.4 Embeddings Generation 52
3.5 Fine-tuning 54
3.6 Metrics 58
3.7 Non-Conservative Substitutions 58
3.8 Cosine Similarity 59

4 Results 61
4.1 Classification Metrics 61
4.2 Hyperparameter Tuning 63
4.3 Comparing ESM1-v and ESM2 67
4.4 Cosine Similarity and Variant Effect 68
4.5 Biological Reasoning Emerges from Sequences 70
4.6 Biological Complexity Impacts Model Quality 75
4.7 Protein Length Impacts the Model Performance 77
4.8 Comparison with Existing Methods 78



5 Conclusions 79
5.1 Final Considerations 79
5.2 Study Limitations 79
5.3 Potential Applications 80
5.4 Future Work 81

References 82



Abbreviations Index

ALS - Amyotrophic Lateral Sclerosis

GOF - Gain-of-function

LOF - Loss-of-function

GLOF - Gain and Loss of Function Dataset

ELA - Esclerose Lateral Amiotrófica

CNN - Convolutional Neural Networks

NLP - Natural Language Processing

AI - Artificial Intelligence

LLM - Large Language Models

ML - Machine Learning

HSN - Hereditary Sensory Neuropathy

A - Adenine

T - Thymine

G - Guanine

C - Cytosine

mRNA - messenger RNA

SNV - Single Nucleotide Variants

SNP - Single Nucleotide Polymorphisms

indel - Insertion and Deletion

CNV - Copy Number Variations

GWAS - Genome-Wide Association Studies

nsSNPs - non-synonymous Single Nucleotide Polymorphisms

SIFT - Sorting Intolerant From Tolerant

PolyPhen-2 - Polymorphism Phenotyping v2

CADD - Combined Annotation Dependent Depletion

ExAC - Exome Aggregation Consortium

UKBB - UK Biobank



GBMI - Global Biobank Meta-analysis Initiative

CASP - Critical Assessment of Protein Structure Prediction

GDT - Global Distance Test

DMD - Duchenne muscular dystrophy

MPRAs - Massively Parallel Reporter Assays

DMS - Deep Mutational Scanning

RNN - Recurrent Neural Networks

LSTM - Long Short-Term Memory

GRU - Gated Recurrent Units

GNNs - Graph Neural Networks

GCNs - Graph Convolutional Networks

GATs - Graph Attention Networks

Q - Query

K - Key

V - Value

ESM - Evolutionary Scaled Modeling

SVM - Support Vector Machine

RF - Random Forest

DT - Decision Tree

GBM - Gradient Boosting Machines

k-NN - k-Nearest Neighbors

HMM - Hidden Markov Models

MSA - Multiple Sequence Alignment

PLM - Protein Language Model

UniProtKB - UniProt Knowledgebase

GCP - Google Cloud Platform

EDA - Exploratory Data Analysis

REF - Original protein

ALT - Mutated protein



TPE - Tree of Parzen

Cos - Cosine

Sim - Similarity

ANOVA - Analysis of Variance

H0 - Null hypothesis

H1 - Alternative hypothesis

R - Arginine

K - Lysine

D - Aspartic Acid

E - Glutamic Acid

V - Valine



Table Index

Table 1 - Default hyperparameters in tested models …………………………..…….. 53

Table 2 - Metrics from models trained with default parameters using ESM-1v

embeddings …………………………………………………………………………… 59

Table 3 - Metrics from models trained with default parameters using ESM-2

embeddings …………………………………………………….…………………...… 60

Table 4 - ESM-1v best model metrics after hyperparameter tuning ……….…………61

Table 5 - ESM-1v model best hyperparameters obtained from the hyperparameter

tuning step ……………………………………………………………….…………… 62

Table 6 - ESM-2 best model metrics after hyperparameter tuning ……….…...………63

Table 7 - ESM-2 model best hyperparameters obtained from the hyperparameter tuning

step ……...……………………………………………………………….…………… 63

Table 8 - Comparison between best models using ESM-2 and ESM-1v embeddings .. 65



Figure Index

Figure 1 - Illustration of how enzymes interact with the substrate to produce products 22

Figure 2 - Schematic representation of protein folding ……………………………… 23

Figure 3 - Schematic representation of transfer learning steps using a CNN ………... 34

Figure 4 - Self-attention scores in a given sentence ……………………………….… 35

Figure 5 - Query, Key, and Value matrix multiplication in the self-attention mechanism

…………………………………………………………………………………….….. 36

Figure 6 - Encoder-Decoder architecture implemented on Transformers …………... 37

Figure 7 - Schematic representation of the steps for embedding generation and

downstream classification fine-tuning ……………………………………………….. 46

Figure 8 - Schematic representation of the context window cropping ……………… 50

Figure 9 - Schematic representation of simple protein folding …………………...… 50

Figure 10 - Embedding generation schema ……………………….………………… 51

Figure 11 - Fine-tuning architecture implementation ……………..………………… 52

Figure 12 - Comparing cosine distance between proteins within variants of the same

label ……………………………………………………………...…………………… 66

Figure 13 - Counting the true labels of distinct variant effect instances regarding

non-conservative and conservative changes ……………………………………….… 68

Figure 14 - Counting the predicted labels of distinct variant effect instances regarding

non-conservative and conservative changes ………………………………….……… 69

Figure 15 - Counting variants per predicted label in different mutations concerning the

amino acid class ……………………………………………………………………… 70

Figure 16 - Percentage of unique genes with Precision, Recall, and F1 Score at different



cutoffs ………………………………………………………………………………… 73

Figure 17 - Model performance at different protein lengths and classes ………..…… 74



1 Introduction
1.1 Motivation

Genome sequencing has revolutionized our understanding of human genetic variation

and its impact on health and disease, allowing a more comprehensive understanding of

evolution and improving the diagnosis and treatment of genetic diseases [1]. Genetic

mutations, while essential for generating diversity and adaptability in species, can have

beneficial and harmful effects on individuals [2]; for example, while the sickle cell trait

mutation protects against malaria in regions where the disease is endemic [3], mutations

in BRCA1 and BRCA2 genes significantly increase the risk of developing breast,

ovarian and other types of cancer [4].

The deep learning field has witnessed remarkable progress since 2012, when

AlexNet [5], a deep convolutional network (CNN), achieved unprecedented

performance in the ImageNet Large Scale Visual Recognition Challenge [6]. In the

following years, various deep learning architectures, such as VGGNet [7], GoogLeNet

[8], and ResNet [9], were developed, pushing the boundaries of image classification and

object recognition. Beyond computer vision, significant advancements also thrived in

natural language processing (NLP) and sequence modeling. More recently, the

introduction of attention mechanisms [10] and transformer architectures [11] further

revolutionized NLP, which is behind artificial intelligence (AI) technologies such as

Large Language Models (LLM) and the massively known ChatGPT.

Recent advancements in AI and Machine Learning (ML) have shown promising

results in understanding the language of proteins, with biological structure and function

emerging from the unsupervised learning of protein sequences [12, 13]. In 2021,

Google’s DeepMind released its version of AlphaFold 2 [14], a deep learning model

capable of predicting protein structures on par with X-ray crystallography, the

state-of-the-art tool for the task that requires an enormous amount of time and expertise

to run [15].

A particular case of interest corresponds to missense variants, a type of genetic

variant that alters the amino acid sequence of the final protein and can cause either a

loss-of-function (LOF) or gain-of-function (GOF) effect [16]. LOF variants can lead to

partial or complete knockdown of the protein, while GOF variants may cause increased

or novel protein activity [17].



Distinguishing between LOF and GOF variants is crucial for understanding the

underlying mechanisms of genetic diseases and determining appropriate treatment

strategies [18]. For example, LOF mutations in the SPTLC1 gene are associated with

hereditary sensory neuropathy (HSN) [19], while GOF mutations in the same gene may

cause juvenile amyotrophic lateral sclerosis (ALS) [20]. Serine supplementation, a

treatment for HSN, can worsen symptoms in patients with SPTLC1 GOF-related ALS,

highlighting the importance of accurate variant effect prediction for personalized

medicine [21].

1.2 Objective

In collaboration with Mendelics Análise Genômica S.A, a leading genetic sequencing

company in Latin America, this study aims to enhance the understanding of missense

variants and develop a predictive model for classifying unseen variants as LOF, Neutral,

or GOF. The primary objectives of this work are:

1. To create a publicly available annotated dataset of LOF, Neutral, and GOF

variants, establishing the first benchmark of its kind;

2. To develop an AI-based model for predicting missense variants' effects using

state-of-the-art representation and transfer learning techniques;

3. To provide the model and code used in this work for public and open use,

promoting transparency and reproducibility in the field of genomics research.

1.3 Contributions

This work’s main contribution lies in creating a curated benchmark for LOF and GOF

variant effect prediction and establishing a novel model for predicting these effects on

variants that do not require feature engineering. In this sense, to the best of our

knowledge, this is the first end-to-end approach proposed for the variant effect

prediction task. It achieves reasonable metrics such as an F1-score of 0.76 for GOF,

0.78 for LOF, and 0.93 for Neutral variants, marking a new state-of-the-art approach for

this task. Furthermore, this work also delves into comparing existing pre-trained models

for this fine-tuning task, effectively comparing the performance impacts of using ESM

or ESM2 with different downstream models.



1.4 Structure

This thesis is organized into five chapters, each focusing on a specific aspect of the

study:

● Chapter I: Introduction

○ Presents the motivation behind the study, the main objectives, and

the overall structure of the thesis.

● Chapter II: Background Knowledge

○ Provides an overview of the relevant concepts and techniques

needed to understand this work, including genetics, protein

structure and function, deep learning, representation learning, and

related works in the field.

● Chapter III: Experimental Study

○ Describes the experimental setup, dataset annotation process, data

preprocessing steps, embedding generation, model fine-tuning,

hyperparameter optimization, and evaluation metrics used in the

study.

● Chapter IV: Results

○ Presents the main findings of the study, including the distribution

of variants across the dataset, the effectiveness of representation

learning for protein folding and variant prediction, the

relationship between cosine similarity and variant effect, the

emergence of biological reasoning from sequences, the impact of

biological complexity on model quality, model interpretability,

and a comparison with existing methods.

● Chapter V: Conclusions

○ Summarizes the key contributions of the study, discusses its

limitations, highlights potential applications in clinical settings

and drug discovery, and suggests future research directions.



2 Background Knowledge
This chapter presents the relevant concepts, such as the biochemical context behind

protein variants, genomic datasets, machine learning context behind sequence models,

more specific concepts on how to represent and learn protein sequences, and, finally, a

review of related works. Those acquainted with these concepts may skip this chapter.

2.1 Genetics

Genetics is the study of heredity and variation in inherited traits [18]. It involves passing

traits from parents to offspring through genes [22]. DNA, or deoxyribonucleic acid, is

the hereditary material found in all living organisms and consists of four nucleotide

bases: adenine (A), thymine (T), guanine (G), and cytosine (C) [23]. The sequence of

these bases determines the genetic information for an organism's development,

functioning, and reproduction [24].

The central dogma of molecular biology describes the flow of genetic

information from DNA to RNA to proteins [25]. During transcription, the DNA

sequence is used as a template to produce messenger RNA (mRNA) molecules [26].

The mRNA is then translated into a sequence of amino acids, which fold into a

functional protein [27]. Proteins are essential macromolecules that perform various

functions in living organisms, including catalyzing metabolic reactions (Figure 1),

providing structural support, and regulating gene expression [28].



Figure 1: Illustration of how enzymes (proteins) interact with the substrate to produce products. Source:

https://www.nagwa.com/en/explainers/726129032520/

Genetic variation arises from mutations, which are changes in the DNA

sequence [18]. Mutations can occur spontaneously or be induced by environmental

factors like radiation or chemicals [29]. Depending on how the sequence is altered, they

can be classified into different types, such as point mutations, called single nucleotide

variants (SNV), insertions, deletions, and chromosomal rearrangements [30]. While

some mutations have no observable effect on the organism, others can lead to altered

protein function, which may be beneficial, neutral, or deleterious [31].

2.2 Amino acids

Amino acids are the building blocks of proteins, essential macromolecules in all living

organisms. The genetic code encodes 20 standard amino acids and is used in protein

synthesis [28]. The resulting linear chain of amino acids, a polypeptide, can fold into a

specific three-dimensional structure determined by the sequence of amino acids (Figure

2) [32].

https://www.nagwa.com/en/explainers/726129032520/


Figure 2: Schematic representation of protein folding. Source:

https://www.researchgate.net/publication/293317366_Structurally_Resolved_Coarse-Grained_Modeling_

of_Motor_Protein_Dynamics

The side chains of amino acids have diverse chemical properties, such as

polarity, charge, and hydrophobicity, which contribute to proteins' folding, stability, and

function [33]. For example, amino acids with hydrophobic side chains like leucine and

valine tend to be buried within the protein core. In contrast, those with hydrophilic side

chains, such as serine and threonine, are often found on the protein surface [26].

Mutations in the genetic code can lead to changes in the amino acid sequence of

proteins, which may alter their folding, stability, and activity [31]. These changes can be

classified as conservative or non-conservative substitutions, depending on the similarity

of the chemical properties between the original and the substituted amino acid [34].

Non-conservative substitutions are more likely to impact protein function significantly

and may be associated with genetic disorders [35].

In addition to the 20 standard amino acids, non-standard amino acids can be

incorporated into proteins through post-translational modifications or expanded genetic

codes [36]. These non-standard amino acids can provide additional chemical

functionality and have applications in protein engineering and drug discovery [37].

2.3 Genetic Variants

Genetic variants are differences in DNA sequence between individuals or populations.

They can range from single nucleotide changes to large-scale structural variations and

play a crucial role in genetic diversity, evolution, and disease susceptibility. Genetic

https://www.researchgate.net/publication/293317366_Structurally_Resolved_Coarse-Grained_Modeling_of_Motor_Protein_Dynamics
https://www.researchgate.net/publication/293317366_Structurally_Resolved_Coarse-Grained_Modeling_of_Motor_Protein_Dynamics


variants can be classified into several types, including single nucleotide polymorphisms

(SNPs), insertions and deletions (indels), copy number variations (CNVs), and

chromosomal rearrangements [38].

SNPs are the most common type of genetic variation, occurring when a single

nucleotide base is substituted with another. They can be found in coding and non-coding

regions of the genome and may have different effects on gene function depending on

their location and the specific base change [2]. SNPs in coding regions can be

synonymous, causing no change in the amino acid sequence, or non-synonymous,

resulting in an amino acid substitution, truncation, or extension of the protein [31].

Genetic variants can arise through various mechanisms, including DNA

replication errors, exposure to mutagens, and recombination events during meiosis [39].

Most genetic variants are neutral and have no observable effect on the organism, while

others may be beneficial or deleterious [40]. The functional impact of a genetic variant

depends on factors such as its location, the specific base change, and the surrounding

genomic context [31].

Studying genetic variants has important implications for understanding human

health and disease. Through the application of genome-wide association studies

(GWAS), numerous genetic variants have been identified to be associated with complex

traits and diseases, such as diabetes, cardiovascular disease, and cancer. These findings

have contributed to developing personalized medicine approaches, where genetic

information guides disease prevention, diagnosis, and treatment strategies [41].

2.4 Missense Variants

Missense variants are a type of genetic variation that occurs when a single nucleotide

change in a gene's coding region results in substituting one amino acid for another in the

encoded protein. These variants are the most common non-synonymous single

nucleotide polymorphisms (nsSNPs) and can have diverse effects on protein structure,

stability, and function [31, 42].

The consequences of a missense variant depend on the specific amino acid

substitution and its location within the protein [43]. Some amino acid changes are

conservative, involving substituting an amino acid with similar chemical properties (like

Glutamic Acid and Aspartic Acid, which are both negatively charged), and may have

minimal impact on protein function. In contrast, in non-conservative substitutions,



where the new amino acid has distinctly different properties, for example, when a

negatively charged amino acid (e.g., Glutamic Acid) is replaced by a positively-charged

amino acid (e.g., Arginine), this variant might be more likely to disrupt protein structure

and function [34].

Missense variants can affect protein function through various mechanisms, such

as altering binding sites, catalytic sites, or post-translational modification sites [44].

They can also disrupt protein folding, making misfolded or unstable proteins prone to

degradation or aggregation [45]. Sometimes, missense variants confer novel protein

functions, leading to gain-of-function effects [46].

The functional impact of missense variants can range from neutral to pathogenic,

depending on the specific protein and the biological context. Neutral missense variants

do not significantly affect protein function and are often tolerated, while pathogenic

variants can lead to disease states by disrupting essential cellular processes. Predicting

the functional impact of missense variants is a major challenge in genomics and

essential for interpreting genetic variations' clinical significance [47].

Several computational tools have been developed to predict the functional

impact of missense variants, such as SIFT (Sorting Intolerant From Tolerant) [31],

PolyPhen-2 (Polymorphism Phenotyping v2) [48], and CADD (Combined Annotation

Dependent Depletion) [49]. These tools use various features, including sequence

conservation, structural information, and physicochemical properties of amino acids, to

estimate the likelihood of a missense variant being deleterious [50].

Missense variants have been implicated in numerous genetic disorders, such as

sickle cell anemia [51], cystic fibrosis [52], and certain cancers [53]. Identifying and

characterizing pathogenic missense variants is crucial for understanding disease

mechanisms, developing targeted therapies, and implementing personalized medicine

approaches [41].

In recent years, high-throughput sequencing technologies have greatly expanded

our ability to identify missense variants across populations. Large-scale projects, such as

the 1000 Genomes Project [54] and the Exome Aggregation Consortium (ExAC) [55],

have provided extensive catalogs of human genetic variation, facilitating the study of

missense variants and their role in health and disease.



2.5 Biobanks and Genomic Datasets

Biobanks and genomic datasets are essential for advancing our understanding of human

health and disease. These repositories store biological samples, such as blood, tissue,

and DNA, along with associated clinical and demographic data from large numbers of

individuals. Providing access to these resources, biobanks, and genomic datasets enable

researchers to conduct large-scale studies, identify genetic risk factors, and develop

personalized medicine approaches [56].

The samples are typically collected from volunteers who consent to share their

health information [57]. Biobanks can be population-based, disease-specific, or focused

on specific ethnic groups or age ranges [58]. Some notable examples of large-scale

biobanks include the UK Biobank (UKBB) [59], the All of Us Research Program in the

United States [60], and the China Kadoorie Biobank [61].

Genomic datasets, on the other hand, are collections of genetic and genomic data

generated through various high-throughput technologies, such as DNA sequencing,

genotyping, and gene expression profiling. These datasets can be derived from biobank

samples or generated independently by research groups or consortia [62]. One of the

most notable examples of a large-scale genomic dataset is the Genome Aggregation

Database (gnomAD), which contains genetic data from over 125,000 exomes and

15,000 whole genomes from diverse populations [63]. GnomAD provides a valuable

resource for studying genetic variation, identifying rare variants, and filtering candidate

disease-causing mutations [64].

One of the key advantages of biobanks and genomic datasets is their ability to

provide large sample sizes, which are essential for detecting genetic associations with

complex diseases. By combining data from multiple biobanks and genomic datasets,

researchers can achieve the statistical power needed to identify rare genetic variants and

study gene-environment interactions [65]. For example, the Global Biobank

Meta-analysis Initiative (GBMI) has recently examined over 2 million individuals from

19 biobanks, identifying over 10,000 genetic loci associated with more than 60 diseases

and traits [66].

ML and AI techniques are increasingly important in leveraging biobanks and

genomic datasets for research and clinical applications [67]. Deep learning methods,

such as convolutional neural networks and recurrent neural networks, have been applied



to analyze genomic sequences, predict the impact of genetic variants, and identify

disease subtypes based on multi-omics data [68].

2.6 Protein Structure and Function

Proteins are essential macromolecules that play a vital role in virtually all biological

processes, including catalysis, signaling, transport, and structural support [27]. The

function of a protein is determined by its unique three-dimensional conformation and

chemical characteristics, ultimately determined by the original amino acid sequence.

The three-dimensional structure of a protein can be described at four hierarchical

levels: primary, secondary, tertiary, and quaternary [69]. The primary structure refers to

the linear sequence of amino acids derived from the genetic code. The secondary

structure refers to the local conformations of the amino acid sequence, such as α-helices

and β-sheets, which are stabilized by hydrogen bonds between the amino acid residues

[70]. The tertiary structure describes the overall three-dimensional arrangement of the

secondary structure elements and the spatial relationships between the side chains of the

amino acids. Some proteins consist of multiple polypeptide chains, and the quaternary

structure refers to the arrangement of these subunits into a functional complex [28].

The relationship between protein structure and function is complex and

multifaceted. Proteins can perform a wide range of functions, such as catalyzing

biochemical reactions (enzymes), transporting molecules across membranes (channels

and transporters), recognizing and binding specific ligands (receptors), and providing

structural support (structural proteins). The specific function of a protein is determined

by its unique three-dimensional structure, which creates binding sites, catalytic sites,

and other functional and structural sequence patterns called motifs [71].

Predicting the three-dimensional structure of a protein from its amino acid

sequence, known as the protein folding problem, has been a grand challenge in

computational biology for decades [72]. Recently, significant progress has been made in

this area with the development of AlphaFold [13], an artificial intelligence system

created by DeepMind. AlphaFold uses deep learning models, or more specifically,

Transformers [11], trained on vast amounts of protein structure data to predict the

three-dimensional structure of proteins with unprecedented accuracy. In the Critical

Assessment of Protein Structure Prediction (CASP) competition [73], AlphaFold

achieved a median global distance test (GDT) score of 92.4%, indicating that its



predictions are comparable to experimentally determined structures through X-ray

crystallography.

The success of AlphaFold and other protein structure prediction methods has

opened up new opportunities for understanding the relationship between protein

structure and function. By providing accurate models of protein structures, these tools

can facilitate the discovery of new drug targets, the design of novel enzymes, and the

understanding of disease-causing mutations [74]. Moreover, integrating protein

structure predictions with other omics data, such as gene expression and protein-protein

interaction networks, can provide a more comprehensive view of cellular processes and

enable the development of personalized medicine approaches [75].

2.7 Loss-of-function and Gain-of-functions Variants

Genetic variants can have diverse effects on protein function, ranging from neutral to

deleterious or beneficial. Two important classes of functional variants are LOF and

GOF variants, which can significantly affect biological processes and are often

associated with disease states [69].

LOF variants are genetic alterations that reduce or eliminate a protein's normal

function [76]. These variants can occur through various mechanisms, such as nonsense

mutations (introducing a premature stop codon), frameshift mutations (altering the

reading frame), splice-site mutations (disrupting normal splicing), or deletions of

essential coding regions [77]. LOF variants can produce truncated, unstable, or

non-functional proteins, which may be rapidly degraded by cellular quality control

mechanisms [78]. LOF variants have been implicated in a wide range of genetic

diseases, such as cystic fibrosis (CFTR gene) [52], Duchenne muscular dystrophy

(DMD gene) [79], and familial hypercholesterolemia (LDLR gene) [80].

In contrast, gain-of-function (GOF) variants are genetic alterations that confer

new or enhanced activity to a protein [81]. GOF variants can produce proteins with

increased stability, altered substrate specificity, or constitutive activation, which may

disrupt normal cellular processes and lead to disease states [46]. Examples of GOF

variants include activating mutations in oncogenes, such as BRAF (associated with

various cancers) [82] and FGFR3 (associated with achondroplasia) [83], as well as

mutations in ion channel genes, such as SCN9A (associated with pain disorders) [84].



LOF and GOF variants are not essentially disease-causing; rather, they just

represent changes in protein function. Yet, distinguishing between LOF and GOF

variants is crucial for understanding the molecular basis of genetic diseases and

developing targeted therapies [29]. However, predicting the functional impact of

variants remains a significant challenge, as the effects may depend on the specific

protein context, genetic background, and environmental factors [85]. Computational

tools, such as SIFT [31], PolyPhen-2 [48], and CADD [49], are commonly capable of

scoring variant pathogenicity but lack the capability of identifying the functional effect

such as LOF or GOF classification.

Recent advances in high-throughput sequencing technologies and

genome-editing tools, such as CRISPR-Cas9, have enabled the systematic

characterization of LOF and GOF variants at a genome-wide scale [86]. Functional

screens, such as massively parallel reporter assays (MPRAs) [87] and deep mutational

scanning (DMS) [88], have been used to assess the effects of thousands of variants on

protein function simultaneously. These approaches have provided valuable insights into

the distribution and functional consequences of LOF and GOF variants across the

human genome.

2.8 Deep Learning

Deep learning is a subfield of machine learning that has revolutionized various domains,

including computer vision, natural language processing, and bioinformatics. It involves

the use of artificial neural networks with multiple layers (hence "deep") to learn

hierarchical representations of data [89]. Deep learning algorithms have achieved

state-of-the-art performance on various tasks, often surpassing human-level

performance [90].

The core building block of deep learning is the artificial neural network, loosely

inspired by biological neurons' structure and function. A neural network consists of

interconnected nodes (neurons) organized into layers, with each neuron receiving input

from the previous layer, applying a non-linear transformation, and passing the output to

the next layer. The input layer receives the raw data, while the output layer produces the

final predictions. Between the input and output layers, one or more hidden layers learn

increasingly abstract data representations [91].



The relevance and utility of deep learning lie in its ability to automatically learn

relevant features from raw data without manual feature engineering [92]. This is

achieved through training, where the neural network is exposed to a large dataset and

adjusts its internal parameters (weights and biases) to minimize a loss function that

quantifies the difference between the predicted and true outputs. The most common

training algorithm is backpropagation [93], which uses the chain rule based on dynamic

programming [94] to efficiently compute gradients and update the network's parameters

paired with optimization techniques such as stochastic gradient descent [94].

Deep learning has been successfully applied to a wide range of problems in

bioinformatics, including protein structure prediction [95], functional protein design

[96], variant effect prediction [97], and gene expression analysis [56]. For example,

DeepVariant [97], a deep learning-based variant caller developed by Google, has

accurately identified genetic variations from sequencing data. Deep learning has also

been used to predict the effects of non-coding variants on gene expression and disease

risk [98].

One of the key advantages of deep learning is its ability to learn from large,

complex datasets, especially from non-tabular, high-dimensional data [99]. As

biological data grows exponentially, deep learning provides a powerful tool for

extracting meaningful insights and making accurate predictions [17]. However, deep

learning also has challenges, such as the need for large amounts of labeled training data,

the risk of overfitting [100], and the difficulty interpreting the learned models.

To address these challenges, various techniques have been developed or used,

such as data augmentation [101], regularization [102, 103], and transfer learning [104].

Data augmentation generates additional training examples by applying transformations

to the existing data. Meanwhile, classic regularization adds penalty terms to the loss

function to prevent overfitting. Deep learning-specific regularization uses the specific

neural network structure and training procedures, such as Dropout and Early Stopping,

to apply ways to prevent overfitting. Transfer learning leverages pre-trained models on

large datasets to improve performance on related tasks with limited labeled data [105].

In recent years, there has been a growing interest in developing interpretable

deep-learning models [106]. Techniques such as attention mechanisms [10], saliency

maps [107], and model-agnostic methods [108] have been used to identify the input

features that contribute most to the model's predictions. These approaches can provide



valuable insights into the underlying biological mechanisms and guide further

experimental validation [109].

2.9 Neural Network Architectures

Neural network architectures are the fundamental building blocks of deep learning

models, defining the structure and organization of the network's layers and connections.

The choice of architecture greatly influences the model's performance, efficiency, and

ability to learn meaningful representations from data [89-91]. Over the years, various

neural network architectures have been proposed, each with strengths and applications

in different domains, including computer vision, natural language processing, and

bioinformatics [110].

One of the most influential and widely used architectures is the CNN [9]. CNNs

are particularly well-suited for processing grid-like data, such as images and time series,

due to their ability to capture local and translation-invariant features. The key

components of CNNs are convolutional layers, which apply learned filters to the input

data, and pooling layers, which downsample the feature maps to reduce spatial

dimensions and provide invariance to small translations. CNNs have achieved

state-of-the-art performance on various computer vision tasks, such as image

classification, object detection, and semantic segmentation [90, 111-113].

Another important architecture is the Recurrent Neural Network (RNN),

designed to process sequential data, such as text, speech, and time series. RNNs have

recurrent connections that allow information to persist across time steps, enabling the

model to capture long-term dependencies and context. However, traditional RNNs

suffer from the vanishing gradient problem, making learning long-range dependencies

difficult [114]. To address this issue, variants of RNNs, such as Long Short-Term

Memory networks (LSTM) [115] and Gated Recurrent Units (GRU) [116], have been

proposed, which introduce gating mechanisms to control the flow of information and

maintain long-term memory.

Autoencoders are a class of neural network architectures used for unsupervised

representation learning. They consist of an encoder network that maps the input data to

a lower-dimensional latent space and a decoder network that reconstructs the original

data from the latent representation. By minimizing the reconstruction error,

autoencoders learn to capture the data's most salient features and structures [117].



Variants of autoencoders, such as Denoising Autoencoders [118] and Variational

Autoencoders [119], have been proposed to improve these models' robustness and

generative capabilities.

Graph Neural Networks (GNNs) are a family of architectures designed to

process graph-structured data, where nodes represent entities and edges represent their

relationships. GNNs learn node embeddings by iteratively aggregating information from

neighboring nodes and updating the node representations based on the aggregated

features [120]. The most popular GNN architectures include Graph Convolutional

Networks (GCNs) [121], which generalize the convolution operation to graph-structured

data, and Graph Attention Networks (GATs) [122], which introduce an attention

mechanism to weigh the importance of different neighbors during the aggregation

process.

In bioinformatics, neural network architectures have been adapted and extended

to address biological data's unique challenges and characteristics. For example, CNNs

have been used to learn motif representations from DNA and protein sequences, RNNs

have been employed to predict protein secondary structure and solvent accessibility, and

GNNs have been applied to explore molecular graphs and predict drug-target

interactions [110, 123-126]. Yet, Transformers excel in sequence modeling tasks such as

natural language processing and generation [127], time-series forecasting [128], and

biological tasks such as biological molecule structure prediction [129], protein folding

[6], and variant prediction [130-131].

2.10 Representation Learning

Representation learning (RL) is a fundamental concept in machine learning, particularly

deep learning, that focuses on automatically learning meaningful and useful data

representations. In contrast to traditional machine learning approaches that rely on

handcrafted features, representation learning aims to automatically discover and learn

the underlying structure and relevant features from raw data. RL allows machine

learning models to capture complex patterns and relationships in the data, improving

performance on various tasks [91].

RL aims to transform raw data into a more abstract and compressed form that

captures the essential information while discarding the irrelevant noise. The learned

representations should be informative, discriminative, and invariant to certain



transformations or variations in the input data [91]. For example, in image recognition

tasks, a good representation should be invariant to changes in illumination, scale, or

orientation while preserving the distinctive features that distinguish different object

classes [132].

Deep learning models, such as CNNs and autoencoders, have been particularly

successful in learning hierarchical representations from complex data. CNNs learn local

and translation-invariant features by applying convolutional filters and pooling

operations to the input data [132]. As the network depth increases, the learned features

become increasingly abstract and capture higher-level concepts [133]. Autoencoders,

conversely, learn compressed representations by encoding the input data into a

lower-dimensional latent space and then reconstructing the original data from the latent

representation [117].

One popular bioinformatics RL approach is using word embeddings, which

originated in NLP. In this approach, biological sequences are treated as "sentences"

composed of "words" (e.g., k-mers or amino acid residues), and neural networks are

used to learn dense vector representations (embeddings) for each word in a

multidimensional space. The learned embeddings capture the semantic and functional

relationships between the words, allowing for efficient downstream analysis and

prediction tasks [134, 135].

Despite the success of representation learning, there are still challenges and open

questions in this field. One challenge is the interpretability of the learned

representations, as deep learning models often produce highly abstract and non-linear

transformations of the input data [136]. Developing methods to visualize and interpret

the learned representations is an active area of research. Another challenge is the limited

availability of labeled data in many bioinformatics tasks, which can hinder learning

effective representations [110]. Transfer learning, self-supervised learning, and

unsupervised pre-training approaches have been proposed to address this issue,

leveraging large unlabeled datasets to learn general-purpose representations that can be

fine-tuned for specific tasks [105].

2.11 Transfer Learning

Transfer learning (Figure 3) is a machine learning approach that leverages knowledge

gained from solving one problem to improve the performance of a different but related

problem [137]. The main idea behind transfer learning is to use pre-trained models,



which have been trained on large datasets for a specific task, typically demanding plenty

of computational power, as a starting point for training on a new task with limited

labeled data. By transferring the learned features and representations from the source

domain to the target domain, transfer learning can significantly reduce the amount of

time and data required to train a model from scratch [138].

Figure 3: Schematic representation of transfer learning steps using a CNN. First, the input is fed into the

pre-trained CNN. Then, resulting weights serve as input to deeper layers of the network that will be

responsible for fine-tuning the model and learning task-specific underlying structures in the data. Source:

https://developer.ibm.com/articles/transfer-learning-for-deep-learning/

Transfer learning has been successfully applied to various problems in

bioinformatics, such as drug-target interaction prediction [139] and genomic sequence

analysis [140]. For example, pre-trained language models, such as BioBERT [141],

have been fine-tuned on various biomedical text-mining tasks.

2.12 Transformers

Transformers [11] are a type of deep learning architecture that has revolutionized the

field of NLP and has been increasingly applied to various tasks in bioinformatics. The

key innovation of Transformers is the self-attention mechanism, which allows the model

to weigh the importance of different parts of the input sequence when making

predictions [11]. Unlike RNNs and CNNs, which process the input sequentially or with

fixed-size windows with a limited range. Transformers can observe all positions in the

https://developer.ibm.com/articles/transfer-learning-for-deep-learning/


sequence simultaneously, enabling them to capture long-range dependencies and context

[142], but also making the computational cost of this computation O(n2). As an example

(Figure 4), when the input is the sentence "The animal didn't cross the street because it

was too tired," the self-attention mechanism is effectively able to capture the

dependency between the words "animal" and "it," as seen by the relative value attention

scores represented by color intensity.

Figure 4: Self-attention scores in a given sentence. The stronger the color, the higher the attention score

between the word on the left and "it." Source: https://jalammar.github.io/illustrated-transformer/

In the self-attention mechanism, the input sequence is first transformed into

three matrices: the query (Q), key (K), and value (V) matrices (Figure 5). These

matrices are obtained by applying linear transformations to the input embeddings. The

attention scores are computed as the scaled dot product between the query and key

matrices, followed by a softmax function to obtain the attention weights. The output of

the self-attention layer is the weighted sum of the value matrix [11].

https://jalammar.github.io/illustrated-transformer/


Figure 5: Query, Key, and Value matrix multiplication in the self-attention mechanism. Multiplying a

vector x1 by the WQ weight matrix produces q1, while WK * x1 = k1, WV * x1 = v1, etc. Computing qn for

each n-th token in X results in the Q matrix; the same goes for K and V. Source:

https://jalammar.github.io/illustrated-transformer/

Transformers consist of an encoder and a decoder, each containing multiple

layers of self-attention and feedforward neural networks (Figure 6) [11]. The

architecture is usually applied in sequence-to-sequence tasks, where the encoder takes

the input sequence and generates a hidden representation, while the decoder takes the

hidden representation and generates the output sequence. In some tasks, such as text

classification or protein function prediction, only the encoder is used, and the hidden

representation is fed into a classifier or regressor [143].

https://jalammar.github.io/illustrated-transformer/


Figure 6: Encoder-Decoder architecture implemented on Transformers. Source:

https://jalammar.github.io/illustrated-transformer/

In bioinformatics, Transformers have been applied to a wide range of problems,

including protein function prediction [12], protein-protein interaction prediction [144],

and genomic sequence analysis [145]. For example, the Evolutionary Scaled Modeling

(ESM) Transformer, a 650 million parameters model pre-trained on millions of protein

sequences, has achieved state-of-the-art performance on protein function prediction and

remote homology detection [12]. Similarly, the DNA Transformer, pre-trained on

genomic sequences, has been used to predict the effects of non-coding variants on gene

expression [146].

Transformers have shown remarkable promise in advancing state-of-the-art

bioinformatics, achieving unparalleled performance in various tasks, from protein

function prediction to genomic sequence analysis. By leveraging the self-attention

mechanism and pre-training on vast amounts of unlabeled data, Transformers have

demonstrated their ability to capture complex biological patterns and unlock the

potential of biological data. As bioinformatics evolves, more pre-trained Transformer

models and task-specific fine-tuning strategies become available, yet datasets and

models are still highly private apart from initiatives such as biobanks and efforts like

ESM [12] and AlphaFold2 [13], limiting transparency and collaboration.

2.13 Foundational Models

Foundational models are a new class of AI models that have gained significant attention

in recent years due to their impressive performance across various tasks and domains

[147]. These models are trained on vast amounts of diverse data using self-supervised

learning and usually employ an enormous amount of model parameters. Combined,

model size and data enable foundational models to learn general-purpose

https://jalammar.github.io/illustrated-transformer/


representations that can be adapted to various downstream tasks with minimal

fine-tuning [127].

The concept of foundational models is inspired by the success of pre-trained

language models like BERT [142] and GPT [127] in NLP. These models are trained on a

large corpora of unlabeled text data using objectives such as masked language modeling

and next-sentence prediction, which allow the models to learn contextual

representations of words and sentences. The pre-trained models can then be fine-tuned

on specific tasks, such as text classification or question answering, achieving

state-of-the-art performance with minimal task-specific training data [143]. By training

on large-scale, diverse datasets using self-supervised objectives, foundational models

aim to learn universal representations that capture the underlying structure and patterns

in the data. These representations can then be transferred to various downstream tasks,

enabling efficient learning and improved generalization [148].

One of the key advantages of foundational models is their ability to learn from

unlabeled data, which is particularly valuable in bioinformatics, where labeled data is

often scarce and expensive to obtain [149]. By leveraging self-supervised learning

objectives, foundational models can capture the intrinsic structure and patterns in

biological sequences, enabling them to generate informative representations without the

need for explicit annotations [150]. These representations can then be used as input

features for downstream tasks, reducing the need for task-specific feature engineering

and improving the efficiency of model training [151].

2.14 Non-neural Machine Learning Algorithms

While deep learning has achieved remarkable success in various bioinformatics tasks,

non-neural machine learning algorithms still play a significant role in the field [152].

These algorithms, which do not rely on neural network architectures, have been widely

used for protein function prediction, disease diagnosis, and drug discovery [153].

Non-neural machine learning algorithms offer several advantages, including

interpretability, computational efficiency, and the ability to work with smaller datasets

[154].

One of the most popular non-neural machine learning algorithms is the Support

Vector Machine (SVM) [155]. SVMs are supervised learning models that aim to find the

optimal hyperplane that separates different classes in a high-dimensional feature space



[156]. SVMs have been successfully applied to various bioinformatics tasks, such as

protein-protein interaction prediction [157], protein fold recognition [158], and cancer

classification based on gene expression data [159]. By applying the Kernel Trick, SVMs

can handle high-dimensional data and are effective when the number of features is

larger than the number of samples [160, 161].

Another widely used non-neural machine learning algorithm is the Random

Forest (RF). RF is an ensemble learning method that combines multiple decision trees

(DT) to make predictions, introducing randomness in the training process to create a

diverse set of trees. This randomness is achieved through feature randomness, where

each decision tree node considers a random subset of input features for splitting, and

sample randomness, where each tree is trained on a random subset of the training data

obtained through bootstrap sampling [162]. During prediction, each tree independently

makes a prediction, and the final prediction is obtained by aggregating the predictions of

all trees using majority vote for classification tasks or average prediction for regression

tasks. The randomness introduced in RF helps to reduce overfitting and improve

generalization performance while also enabling the handling of high-dimensional data

through automatic feature selection during training. Additionally, RFs provide a

measure of feature importance, which can be used for feature selection and

interpretation [163].

DTs and RFs are especially good at learning tabular datasets, often beating

multilayer perceptron approaches [164]. RFs have been applied to various

bioinformatics problems, including protein function prediction [165], DNA methylation

pattern analysis [166], and biomarker discovery [167].

Gradient Boosting Machines (GBM) is another ensemble learning method that

combines multiple weak learners, typically decision trees, to make predictions. Unlike

RF, which trains decision trees independently, GBM trains weak learners sequentially,

with each learner trying to correct the mistakes of the previous ones [186]. The training

process of GBM involves initializing the model with a constant value that minimizes the

loss function, and then iteratively computing the negative gradient of the loss function

with respect to the current model's predictions, training a weak learner on the residuals,

and adding the predictions of the weak learner, multiplied by a learning rate, to the

current model's predictions. The final prediction is obtained by combining the

predictions of all weak learners. GBM can use various loss functions, such as squared



error for regression tasks and logarithmic loss for classification tasks, and the learning

rate is a hyperparameter that controls the contribution of each weak learner to the final

model, helping to prevent overfitting. GBM is known for its high predictive

performance, as it can capture complex interactions and non-linearities in the data. Like

RF, it also measures feature importance [169]. GBMs have been applied to tasks such as

protein-ligand binding affinity prediction [170], gene expression analysis [171], and

drug response prediction [172].

Other non-neural machine learning algorithms applied in bioinformatics include

k-nearest Neighbors (k-NN), Naïve Bayes, and Hidden Markov Models (HMMs). k-NN

is a non-parametric method that makes predictions based on the majority class of the

k-closest training examples in the feature space. Naïve Bayes is a probabilistic classifier

that assumes the independence of features given the class label. HMMs are probabilistic

models that represent the temporal dependencies among a sequence of observations and

have been widely used for modeling DNA and protein sequences [173-175].

Despite the success of non-neural machine learning algorithms in

bioinformatics, they also have limitations. One challenge is the need for feature

engineering, which requires domain expertise to represent the problem properly and can

be time-consuming [111]. To address these limitations, researchers have explored hybrid

approaches that combine non-neural machine learning algorithms with deep learning,

leveraging the strengths of both approaches [176].

2.15 Multiple Sequence Alignment (MSA)

Understanding the relationships between biological sequences is a central theme in

bioinformatics. Multiple sequence alignment (MSA) is a fundamental tool that allows

researchers to analyze and interpret the similarities and differences between protein or

DNA sequences. By aligning three or more sequences, MSAs unveil crucial information

about evolutionary relationships, conserved functional domains, and motifs, offering

valuable insights into protein function and structure, as well as the impact of genetic

variation [177].

MSAs, initially proposed in 1987 by Russell Doolittle and Da-Fei Feng [178],

are essential for constructing phylogenetic trees, depicting the evolutionary history and

relationships between species. By identifying conserved and variable regions within

aligned protein sequences, one can infer evolutionary distances and common ancestry,



providing a deeper understanding of the evolutionary processes that have shaped

biological diversity. Additionally, MSAs play a crucial role in protein structure

prediction by highlighting conserved residues and motifs within protein families [13].

These conserved regions often correspond to functionally important residues or

structural elements, serving as anchors for predicting the three-dimensional structure of

proteins.

Furthermore, MSAs contribute significantly to function prediction and

annotation by enabling comparisons of protein sequences with unknown functions

against databases of known sequences. It allows researchers to infer potential functional

roles based on conserved domains or motifs, expanding our understanding of protein

functions and their involvement in biological processes. Moreover, MSAs facilitate the

identification of functionally important residues by analyzing patterns of conservation

and variation across aligned sequences. This knowledge is critical for understanding

how proteins function and how mutations may affect their activity [179].

However, introducing MSAs to the data processing significantly increases the

complexity of the implementation. To leverage MSAs, it is required first to align the

sequence of interest against multiple evolutionary sequences of the same protein [180].

This alignment is computationally expensive due to the employment of

pattern-matching algorithms and is also dependent on the availability of similar protein

sequences in a reference dataset [181]. Therefore, while increasing the context of

conserved functional domains and structural motifs, any approach based on only one

sequence is preferred, especially due to the simplicity of implementation. In this sense,

this work prioritized using a single sequence approach, which can be done using

pretrained models such as Evolutionary Scaled Model, to be described in the following.

2.16 Evolutionary Scaled Model

The Evolutionary Scaled Model (ESM) [12] is a powerful protein language model

(PLM) that has gained significant attention in computational biology and

bioinformatics. Developed by Rives et al. (2020), ESM is a 650 million-parameter

transformer-based model that learns to predict the next amino acid in a protein

sequence. Many possible residues occurred in a protein sequence through randomness,

yet evolution naturally selected adequate amino acids in each position, either due to



function or structural relevance. Therefore, each amino acid residue carries an indirect

evolutionary context of multiple selection steps. By training on a massive dataset,

UR50/S, a high-diversity sparse dataset based on the UniRef50 representative sequences

of over 250 million protein sequences from various species, ESM has demonstrated

remarkable capabilities in capturing the complex patterns and dependencies in protein

sequences, thus enabling a wide range of downstream applications [12]. UniRef

provides clustered sets of sequences from UniProt Knowledgebase (UniProtKB), and

UniRef50 is specifically built by clustering UniRef100 at 50% identity level [182]. The

goal behind UniRef50 is to reduce redundancy and increase the detection of distant

relationships between sequences.

One of the key features of ESM is its ability to learn from unlabeled protein

sequences in a self-supervised manner. By leveraging the vast amount of evolutionary

information in protein sequences across diverse species, ESM can capture the intricate

relationships between amino acids and the evolutionary constraints that shape protein

structure and function. This self-supervised learning approach allows ESM to learn rich

and biologically meaningful representations of proteins without the need for explicit

annotations or labeled data [12].

The ESM architecture is based on the transformer model, explained in Section

2.12. The transformer architecture enables ESM to capture long-range dependencies and

interactions between amino acids in a protein sequence, which is crucial for

understanding proteins' complex folding and functional properties. By focusing on

different positions in the sequence and learning to weigh their importance, ESM can

effectively model the contextual information and dependencies that govern protein

behavior [12].

One notable feature of ESM is its ability to generate accurate predictions for a

wide range of protein-related tasks, even without task-specific training data. This

zero-shot prediction capability has been demonstrated in various applications, such as

predicting the effects of mutations on protein function [130], identifying functional sites

in proteins [183], and designing novel protein sequences with desired properties [184].

By utilizing the knowledge learned from the vast evolutionary landscape of proteins,

ESM can generalize to new and unseen proteins, as well as provide valuable insights

into their structure and function.



A significant advantage of ESM is that it does not require MSAs as input, which

greatly simplifies its implementation and makes it more accessible to researchers and

practitioners. Traditional protein function prediction methods often rely on MSAs to

capture evolutionary information and identify conserved regions in proteins. However,

constructing accurate and reliable MSAs can be computationally expensive and

time-consuming, especially for large and diverse protein families. ESM circumvents this

requirement by directly learning from individual protein sequences, making it more

efficient and scalable for large-scale analyses.

The authors have made ESM publicly available1, allowing researchers and

practitioners to easily access and utilize this powerful PLM for their studies and

applications. The availability of ESM as an open-source resource has facilitated its

widespread adoption and spurred further research and development in protein

bioinformatics.

Since its introduction, ESM has been applied to various tasks and has shown

impressive performance compared to traditional methods. For example, in the task of

predicting the effects of single amino acid variants on protein function, ESM has

outperformed existing methods, such as PolyPhen-2 [48] and SIFT [31], by leveraging

its ability to capture the contextual information and evolutionary constraints in protein

sequences.

This specific work utilized a variation of ESM, also released in 2021 by the

same research group, ESM-1v [130]. ESM-1v is an advanced version specifically

designed for improved protein variant prediction task performance. Building upon the

success of the original ESM model, ESM-1v introduces several key enhancements to

the training pipeline and model architecture, making it more suitable for accurately

predicting the effects of single amino acid variants on protein function.

One of the main improvements in ESM-1v is using a larger and more diverse

training dataset. While the original ESM model was trained on a dataset of 250 million

protein sequences, ESM-1v leverages an even larger dataset of over 1 billion protein

sequences from the UniRef90 database [182]. This expanded training dataset allows

ESM-1v to capture a wider range of evolutionary information and to learn more robust

and generalizable representations of protein sequences

1 https://github.com/facebookresearch/esm

https://github.com/facebookresearch/esm


ESM-1v also employs the more sophisticated model architecture from ESM-1b,

proposed in the original ESM paper. It also utilizes a 650 million parameters

transformer model with 33 layers and 1280 hidden units, which allows for a more

expressive and nuanced representation of protein sequences. The increased model

capacity enables ESM-1v to capture more complex patterns and dependencies in the

proteins’ structures, leading to approximately 10% improvement in downstream task

performance, such as variant prediction [130].

2.17 Related Works

The prediction of LOF and GOF effects in missense variants is a crucial area of research

in genomics. Various computational tools and approaches have been developed to

address this challenge. In the following, we discuss some notable works related to our

study.

AlphaMissense [131] model combines structural context and evolutionary

conservation to predict pathogenic effects in missense variants and achieves

state-of-the-art results across various genetic and experimental benchmarks.  It has been

fine-tuned to human and primate variant population frequency data and does not train

on clinically curated labels. These datasets can be limited in representing the

population's full spectrum of genetic variation. This means that training data may be

biased towards variants more likely to have a known functional impact.  AlphaMissense

provides predictions for all possible single amino acid substitutions in the human

proteome, the entire set of proteins expressed by an organism, and classifies 89% of

missense variants as either likely benign or likely pathogenic. AlphaMissense expands

the number of confidently classified variants and has shown improved performance

compared to other models on clinical benchmarks. As a limitation, AlphaMissense uses

MSA representation, which, as mentioned, limits the applications of this model and

increases its complexity, requiring building the MSA sequences before applying the

model [131].

LoGoFunc [185] specifically targets GOF and LOF prediction. The study uses a

pre-built dataset by Bayrak et al. [186] comprising 11,370 labeled pathogenic GOF and

LOF variants. This work used NLP approaches to identify the classes for the specific

variants, which might be a limitation on the biological accuracy of these variants due to



potential language processing ambiguity and errors. They augment this dataset by

adding 65,075 variants deposited in the Human Gene Mutation Database (HGMD). The

proposed model uses feature engineering to train an ensemble of 27 LightGBM

classifiers [185]. The features passed to the model consist of structural representations

by AlphaFold 2 (which requires MSA) and molecule descriptors, a feature engineering

approach for representing molecule structure (for example, the count of Nitrogen atoms

in the molecule).

VariPred [187] compares different approaches to variant prediction, a problem

different from the one addressed in this work. Variant prediction, as opposed to variant

effect (LOF or GOF) prediction, is the task of distinguishing if a variant will be

deleterious, that is, cause a disruption in the original protein role in a biological pathway

or benign. This paper effectively compares different versions of ESM models (ESM-1b,

ESM-2, ESM-1v) and different approaches to extract the model's learned

representations. This study shows that ESM-1v is a better-suited model for variant

prediction than ESM-2 [188] when fine-tuned on top of the learned representations.

This is potentially due to ESM-1v being specifically tailored for variant prediction

tasks, employing a training paradigm and dataset focused on this specific subset of

tasks. However, considering a binary zero-shot classification setup, ESM-1b, using

simply the log-likelihood on the output layer, outperforms both mentioned models. The

study also suggests that ESM-2 might be more suited for protein folding problems,

while ESM1 variants (ESM-1v and ESM-1b) perform better in variant function,

pathogenicity, and effect prediction. The study hypothesizes that this is potentially due

to the closeness of ESM-1 datasets to the human-only proteins included in ClinVar used

to train these models. The experimental setup for modeling from VariPred (Figure 7) is

similar to what we applied in this work. The most significant change is substituting a

fixed shallow network for fine-tuning by trying out different models, including but not

only neural networks [187].



Figure 7: Schematic representation of the steps for embedding generation and downstream classification

fine-tuning. A. Protein language model (e.g., ESM) generates wildtype (non-mutated) and mutant

sequence embeddings. B and C. Embeddings are fed into a shallow feed-forward neural network model

for specific variant prediction tasks (extracted from [187]).

Our work differs from the others mentioned due to the following: increasing the

granularity of variant prediction works like AlphaMissense while reducing the inference

pipeline complexity by removing the MSA construction step. We also utilize a more

refined dataset than LoGoFunc, with manually curated labels on coding genes, while

employing a deep-learning-based approach that can effectively remove the feature



engineering used in the mentioned work and potentially improve the quality of

predictions. Finally, we explored the VariPred work comparing ESM1 and ESM2

models for variant prediction, finding similar results when fine-tuning both LOF and

GOF prediction.



3 Experimental Study
3.1 Computational Environment

This study's experimental setup consisted of three main components. First, protein

embeddings were generated using a dedicated cluster of 4 Tesla T4 GPUs on the Google

Cloud Platform (GCP). After generating all embeddings, fine-tuning experiments were

conducted using Google Colab with a Pro+ subscription, enabling access to an A100

GPU for significantly faster neural network training. Further exploratory data analysis

(EDA) was performed on an Apple Macbook Pro with an M1 Max chip.

Python 3.10 served as the primary programming language for all the

experiments. The following Python libraries were employed: PyTorch 2.2.2 [189] was

the main library for deep learning-related tasks; scikit-learn 1.4.2 [190] was used for

non-neural modeling; and hyperopt 0.2.7 [191] for hyperparameter tuning of both

deep-learning and non-deep-learning models. The code, and instructions for setting up

the Python environment, are provided on GitHub1.

3.2 Dataset Annotation

A significant contribution of this study is making the dataset provided by Mendelics

Análise Genômica S.A. publicly available2. The original dataset combines two public

variant datasets: benign variants from GnomAD v3.1 [63] and pathogenic variants from

ClinVar (July 2023 version) [192]. The team of physicians at Mendelics with PhD in

Genetics or Neurology, led by Prof. Dr. Fernando Kok and Dr. David Schlesinger,

annotated the dataset, targeting genes with known functions. In the annotation process,

each variant was analyzed only once by a specialist whereas in case of uncertainty, a

committee of specialists would vote on that specific variant. In case of disagreement

between the annotators, the variant was discarded from the final set. The final curated

dataset, named Gain and Loss of Function Dataset (GLOF), is available on Kaggle2.

3.3 Dataset

The experimental dataset contains 112,437 variants, with 3,137 (~2.79%) labeled as

GOF, 25,376 (~22.57%) as LOF, and 83,924 (~74.64%) as Neutral. Due to this

imbalance in the dataset, specific metrics like F1-score, Recall, and Precision were

1 https://github.com/victormaricato/lof-gof-predictor
2 https://www.kaggle.com/datasets/maricatovictor/loss-and-gain-of-function-variants/data

https://github.com/victormaricato/lof-gof-predictor
https://www.kaggle.com/datasets/maricatovictor/loss-and-gain-of-function-variants/data


chosen for evaluation, further discussed in Section 3.6. The dataset was split into

training, validation and test sets using randomized sampling for cross-validation

(holdout) [163], respecting the original label distribution in the dataset. From the

original dataset, 80% of variants were assigned for training, 10% for validation and

hyperparameter tuning, and 10% for tests. Final metrics in this study are reported using

the holdout test set. Model selection was conducted using only the validation set to

ensure no optimization or decision-making based on the test set.

The only preprocessing required in this study was an integer encoding applied to

the labels, where Neutral = 0, LOF = 1, and GOF = 2. This encoding does not introduce

ordering bias as the models treat each integer as a distinct class and do not implement

ordinal classification objectives [193].

3.4 Embeddings Generation

For generating the embeddings in the Google Cloud Platform, the fair-esm library1 was

used for ESM-1v [130], and HuggingFace [194] was used for ESM2 [188].

All proteins analyzed were within the length of ESM2 maximum amino acids

(tokens). Yet, ESM-1 [12] has a maximum length of 1024 amino acids. While ESM2 did

not require any preprocessing, in ESM1 a context window was implemented, as shown

in Figure 8. The context window is centralized at the SNP and extends the protein

sequence to 512 amino acids to the left and 512 to the right of the SNP. This is a

significant limitation on ESM-1v as proteins are 3D-shaped, meaning amino acids

further located in the sequence after the 512 amino acids window could still be very

close in nature’s 3D space as the protein folds, as depicted in Figure 9.



Figure 8: Schematic representation of the context window cropping. Centralizing the mutated amino acid

position, up to 512 amino acids are kept towards the N-terminal (beginning of the protein sequence) and

C-terminal (end of the protein sequence).

Figure 9: Schematic representation of simple protein folding. Protein is translated into its unfolded state

(left), and post-translational chemical interactions and bonds are formed in the tridimensional space

(middle), ending in the protein result (right). Amino acids that were far in the unfolded state (linear

sequence representation) are then directly interacting with each other. Source:

https://www.nature.com/articles/s41467-023-41664-1

The final embedding for both models consists of a 1280-sized vector that ideally

is capable of extracting relevant features from the protein sequence [12, 195-196]. Each

1 - https://github.com/facebookresearch/esm

https://www.nature.com/articles/s41467-023-41664-1
https://github.com/facebookresearch/esm


protein form has an associated embedding with the protein sequence, as illustrated by Figure 10. It is usually the case where the original

and mutated protein will have relatively similar embeddings. Therefore, the wild-type protein has the reference embedding, representing

the protein in its natural form. Figure 8 describes the architecture adopted, where the reference protein embedding is concatenated with the

mutated protein embedding for each mutation, generating a 2560 input vector for subsequent modeling tasks (Figure 10).

Figure 10: Embedding generation schema. Each protein sequence associated with the variant (REF and ALT) is embedded distinctly.

3.5 Fine-tuning

Five different models were used for fine-tuning the LOF/GOF/Neutral classification task (Figure 11). After generating the embeddings

separately for REF (original) and ALT (mutated) proteins, the embeddings are concatenated and fed into an independent classifier (Logistic

Regression [163], Random Forest [162], XGBoost [197], LightGBM [169] and Fully Connected Network [90]) for fine-tuning on variant

effect. All models were tested with default values for hyperparameters [191], described in Table 1, and the best model was then selected for

hyperparameter tuning using the tree of Parzen estimators algorithm.



Figure 11: Fine-tuning architecture implementation.



Table 1: Default hyperparameters in tested models.

Model Parameter list

Logistic Regression penalty='l2', *, dual=False, tol=0.0001, C=1.0,

fit_intercept=True, intercept_scaling=1,

class_weight=None, random_state=None,

solver='lbfgs', max_iter=100, multi_class='auto',

verbose=0, warm_start=False, n_jobs=None,

l1_ratio=None

Random Forest n_estimators=100, *, criterion='gini',

max_depth=None, min_samples_split=2,

min_samples_leaf=1, min_weight_fraction_leaf=0.0,

max_features='sqrt', max_leaf_nodes=None,

min_impurity_decrease=0.0, bootstrap=True,

oob_score=False, n_jobs=None, random_state=None,

verbose=0, warm_start=False, class_weight=None,

ccp_alpha=0.0, max_samples=None,

monotonic_cst=None

XgBoost Classifier base_score=0.5, colsample_bylevel=1,

colsample_bytree=1, gamma=0, learning_rate=0.1,

max_delta_step=0, max_depth=10,

min_child_weight=1, missing=None,

n_estimators=100, nthread=-1,

objective='binary:logistic', reg_alpha=0, reg_lambda=1,

scale_pos_weight=1, seed=0, silent=True,

subsample=1

LightGBM boosting_type='gbdt', num_leaves=31,

max_depth=-1, learning_rate=0.1, n_estimators=100,

subsample_for_bin=200000, objective=None,



class_weight=None, min_split_gain=0.0,

min_child_weight=0.001, min_child_samples=20,

subsample=1.0, subsample_freq=0,

colsample_bytree=1.0, reg_alpha=0.0,

reg_lambda=0.0, random_state=None, n_jobs=None,

importanane_type='split'

Fully Connected Network hidden_layers = [256, 128], epochs=100,

batch_size=32, learning_rate=0.001,

weight_decay=0.001, optimizer="AdamW"

The Tree of Parzen (TPE) algorithm [191] is a Bayesian optimization method for

hyperparameter tuning. It aims to minimize the objective function by intelligently

searching the hyperparameter space based on past evaluation results on the holdout set.

TPE builds models to approximate the performance of hyperparameters based on

historical measurements and then subsequently chooses new hyperparameters to test

based on these models.

The TPE algorithm models the objective function as a Parzen estimator, a

non-parametric approach to density estimation. It uses a tree-structured scheme to

recursively partition the hyperparameter space into subregions based on the previously

evaluated hyperparameter configurations and their corresponding objective function

values. By modeling the densities, TPE can identify promising regions in the

hyperparameter space where good objective function values are more likely to be found.

It balances exploration and exploitation by sampling hyperparameter configurations

from different density estimations to avoid getting stuck in local optima.

The TPE algorithm is effective and widely used for hyperparameter optimization

in various machine-learning tasks. It is particularly useful when the objective function is

expensive to evaluate, as it aims to minimize the number of evaluations required to find

good hyperparameter configurations. In this study, the RF algorithm, which obtained the

best results using default values, was optimized under the TPE algorithm for the

hyperparameters: number of estimators, max depth, minimum samples in a leaf, and

minimum samples for split.



3.6 Metrics

For evaluating the models, precision (Equation 1), recall (Equation 2), F1-score

(Equation 3), and accuracy (Equation 4) were measured. The first three metrics allow an

independent understanding of model behavior across all three classes, which is

important due to label imbalance. Precision metric measures the amount of false

positive cases in a class, while recall measures false negatives. Good precision means

the model classification is not too permissive and labels irrelevant instances, whereas a

good recall means the model can correctly identify the relevant cases in a class.

F1-score computes a harmonic mean of precision and recall. Accuracy (Equation 4) was

also calculated in this study, but due to the imbalance of the labels, it can be misleading

if not interpreted alongside auxiliary metrics.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

Equation 1: Precision metric calculation.

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

Equation 2: Recall metric calculation.

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 * 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Equation 3: F1-score metric calculation.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

Equation 4: Accuracy metric calculation.

3.7 Non-Conservative Substitutions

To further understand the model behavior and draw interpretations to the model, a series

of investigations were conducted to leverage the biological context of this study.

As mentioned in Section 2.2, non-conservative substitutions in amino acids are

more likely to impair protein function [198]. This happens when an amino acid with



different chemical properties replaces another (e.g., a basic amino acid is replaced by an

acidic).

In this sense, a chi-squared test was performed to test if the model predictions

significantly vary between conservative and non-conservative substitutions [199]. The

chi-square test is a statistical test used to determine whether a significant difference

exists between the expected occurrence frequency and the observed frequency of the

variant effect (LOF, GOF, or Neutral). The chi-square test is performed by calculating

the chi-square statistic, which measures the discrepancy between the expected and

observed frequency of occurrence. The chi-square statistic is calculated as follows:

χ2 =  ∑  (𝑂−𝐸)2

𝐸

Equation 5: Chi-square statistic calculation.

where O is the observed frequency of occurrence, E is the expected frequency, and the

summation is taken over all categories. The chi-square statistic is then compared to a

critical value from a chi-square distribution with k - 1 degrees of freedom, where k is the

number of categories. If the chi-square statistic is greater than the critical value, then the

null hypothesis that the expected and observed frequencies of occurrence are equal is

rejected. The chi-square test is a powerful tool for testing the significance of differences

between observed and expected frequencies of occurrence. It is a relatively simple test

to perform and can be used to test various hypotheses. In this case, it tests whether the

frequency of LOF, GOF, or Neutra variants changes significantly given a

non-conservative amino acid change.

3.8 Cosine Similarity

It is expected that similar instances are closely represented in the embedding space. In

language models, this essentially means that "human" and "person" vectors would be

somewhat similar [200]. This similarity can be measured through cosine similarity and

Euclidean distance metrics.



This study performed an ANOVA [163] test to check for a statistically

significant difference in cosine similarity measure between different labels in ESM-1v

embedding space.

In this case, cosine similarity (Equation 6) is calculated between the reference

and mutated protein as follows:

𝑆𝑖𝑚(𝑅, 𝐴) = 𝑐𝑜𝑠(θ) =  𝑅 · 𝐴
||𝑅||

2
 ||𝐴||

2
 

Equation 6: Calculating the cosine similarity between the non-mutated and mutated proteins in

the variant.

where R is the embedding of the reference protein, and A is the embedding of the

mutated (alternative) protein. The resulting value is the cosine of the angle between the

vectors R and A and can take on values from -1 to 1. Moreover, we define the cosine

distance (Equation 7) as the opposite of the cosine similarity:

𝐷𝑖𝑠𝑡(𝑅,  𝐴) =  1 −  𝑆𝑖𝑚(𝑅,  𝐴)

Equation 7: The cosine distance between non-mutated and mutated protein embeddings.



4 Results
This chapter presents computational experiments exploring non-neural and neural

models using ESM-1v and ESM2 embeddings as inputs. We investigate the impacts of

hyperparameter tuning and examine the connection between model behavior and

biological context. Finally, we compare the results with existing methods.

4.1 Classification Metrics

As mentioned, five different model types were evaluated on a validation set extracted

from the training set. Evaluation metrics were extracted and reported in Table 2

specifically for the models built using ESM-1v embeddings as input, and Table 3 for

ESM-2 results, where the highest value for each metric in each variant effect label is

highlighted in bold.



Table 2: Metrics from models trained with default parameters using ESM-1v embeddings.

Metric Variant Label Logistic

Regression

Random

Forest

XGBoost LightGBM Neural

Network

Precision Neutral 0.88 0.92 0.90 0.90 0.89

Loss-of-Function 0.67 0.78 0.79 0.78 0.73

Gain-of-Function 0.56 0.84 0.87 0.81 0.58

Recall Neutral 0.92 0.94 0.94 0.94 0.92

Loss-of-Function 0.29 0.74 0.67 0.67 0.64

Gain-of-Function 0.52 0.76 0.65 0.73 0.62

F1-score Neutral 0.88 0.93 0.92 0.92 0.91

Loss-of-Function 0.58 0.76 0.72 0.72 0.68

Gain-of-Function 0.38 0.80 0.75 0.77 0.60

Accuracy 0.81 0.89 0.87 0.87 0.85



Table 3: Metrics from models trained with default parameters using ESM-2 embeddings.

Metric Variant Label Logistic

Regression

Random

Forest

XGBoost LightGBM Neural

Network

Precision Neutral 0.85 0.91 0.89 0.89 0.81

Loss-of-Function 0.67 0.78 0.76 0.76 0.49

Gain-of-Function 0.58 0.77 0.77 0.76 0.00

Recall Neutral 0.92 0.93 0.93 0.93 0.89

Loss-of-Function 0.53 0.71 0.67 0.67 0.38

Gain-of-Function 0.22 0.67 0.58 0.63 0.00

F1-score Neutral 0.88 0.92 0.91 0.91 0.85

Loss-of-Function 0.59 0.74 0.71 0.71 0.43

Gain-of-Function 0.31 0.72 0.67 0.69 0.00

Accuracy 0.80 0.88 0.86 0.87 0.75

4.2 Hyperparameter Tuning

Using the initial default hyperparameter values shown in Tables 2 and 3, the winning

model is RF for both EMS-1v and EMS-2 embeddings, outperforming the other models

tested in most metrics. As a next step, the best model with default hyperparameter

values was submitted for hyperparameter tuning using Bayesian optimization. In Table

4, the hyperparameter tuning results of the Random Forest model using ESM-1v are

shown, and the highest value for each metric in each variant effect label is highlighted

in bold.



Table 4: ESM-1v best model metrics after hyperparameter tuning.

Metric Variant Label Default Random

Forest

Random Forest with Hyperparameter

Tuning

Precision Neutral 0.92 0.91

Loss-of-function 0.78 0.79

Gain-of-function 0.84 0.86

Recall Neutral 0.94 0.94

Loss-of-function 0.74 0.74

Gain-of-function 0.76 0.72

F1-score Neutral 0.93 0.93

Loss-of-function 0.76 0.76

Gain-of-function 0.80 0.78

Accuracy 0.89 0.89

When specifically predicting GOF variants, the RF model, using ESM-1v

embeddings as inputs with default hyperparameter values, performed better than the

hyperparameter-tuned one, as outlined by the Recall measure. Table 5 depicts the

hyperparameter values estimated through Bayesian optimization for the RF model with

ESM-1v embeddings.



Table 5: ESM-1v model best hyperparameter values obtained from the hyperparameter tuning

step.

Parameter Optimized Value Default value

max_depth 92 None

n_estimators 168 100

min_samples_leaf 20 1

min_samples_split 20 2

With respect to ESM-2 embedding, slight improvements were observed in the

model after hyperparameter tuning, as shown in Table 6. Although the enhancements

were marginal, the hyperparameter-tuned RF was retained for subsequent comparisons

with the ESM-1v based model. Table 7 presents the hyperparameter values used in the

RF model trained with ESM-2 embeddings after tuning.



Table 6: ESM-2 best model metrics after hyperparameter tuning.

Metric Variant Label Default Random

Forest

Random Forest with Hyperparameter

Tuning

Precision Neutral 0.91 0.91

Loss-of-function 0.78 0.78

Gain-of-function 0.77 0.78

Recall Neutral 0.93 0.93

Loss-of-function 0.71 0.72

Gain-of-function 0.67 0.66

F1-score Neutral 0.92 0.92

Loss-of-function 0.74 0.75

Gain-of-function 0.72 0.71

Accuracy 0.88 0.88

Table 7: ESM-2 model best hyperparameter values obtained from the hyperparameter tuning step.

Parameter Optimized Value Default value

max_depth 100 None

n_estimators 209 100

min_samples_leaf 2 1

min_samples_split 6 2



4.3 Comparing ESM1-v and ESM2

At this point, we compared ESM-1v and ESM2 embeddings to determine which is

better suited for representing protein molecules for a variant effect classification task.

For this, we followed the same methodology for the experiment described in Section

4.1, such that all five model types were trained using ESM2 embedding. The best model

was selected, and a hyperparameter tuning step was applied. For ESM2, hyperparameter

tuning does enhance model performance, although not very significantly. For the sake

of simplicity, we only show the results obtained for the best model obtained, exhibited

in Table 5. This table also compares the best models considering both embeddings

ESM1-v and ESM2. From the results, it is clear that ESM-1v is the embedding best

suited for this downstream task since it is the one that leads to the best-performing

model (Table 6).



Table 8: Comparison between best models using ESM-2 and ESM-1v embeddings.

Metric Variant Label ESM-2 Best Model (with

hyperparameter tuning)

ESM-1v Best Model (without

hyperparameter tuning)

Precision Neutral 0.91 0.92

Loss-of-function 0.78 0.78

Gain-of-function 0.78 0.84

Recall Neutral 0.93 0.94

Loss-of-function 0.72 0.74

Gain-of-function 0.66 0.76

F1-score Neutral 0.92 0.93

Loss-of-function 0.75 0.76

Gain-of-function 0.71 0.80

Accuracy 0.88 0.89

4.4 Cosine Similarity and Variant Effect

From the last experiments, it is clear that the embedding representation derived from

ESM models is well suited for subsequent variant effect prediction, as seen by the

considerably high metrics obtained, with ESM-1v combined with Random Forest being

the best model for this task. However, ESM models can do zero-shot classification for

deleteriousness or benign labels [130]. Following this finding, we calculate the cosine

distance between the embeddings of reference and alternative proteins within variants of

the same type. Then, it investigated how the embeddings correlate with variant effects,

as shown in Figure 12.



Figure 12: Comparing cosine distance between proteins within variants of the same label. The higher the

cosine distance, the more distinct the embedding model represents the proteins in the embedding space.

Overall, LOF and GOF variants have a higher cosine distance (lower cosine

similarity) than Neutral variants. A one-way analysis of variance (ANOVA) test was

further performed to evaluate the statistical significance of this finding with the

resulting p < 0.0005. In this statistical test, the null hypothesis (H0) was that the mean

cosine distance was the same across all three labels (Neutral, LOF, and GOF). In other

words, there is no statistically significant difference among the labels' average cosine

distance values. Meanwhile, the alternative hypothesis (H1) was that at least one of the

means of the cosine distance values differs from the others. In other words, there is a

statistically significant difference in the average cosine distance values among the

different labels.

Deleterious variants (LOF or GOF) being more dissimilar (higher cosine

distance) corroborate with the biological concept that proteins that remain structurally

and chemically similar should keep their original function, while mutated proteins that

suffer from structural changes or have non-conservative substitutions will tend to

deviate from its original function, potentially gaining or losing it [33].



It is also found that GOF variants have higher dissimilarity in terms of cosine

distance (p < 0.05). Further biological investigation on this is necessary to understand if

there is a biological process behind it. It could be hypothesized that GOF variants that

do not have an augmented function but gain a whole new one would need a more distant

structure from their original form [201]. For example, in the case of enzymes, losing a

function is as simple as not being able to interact with a substrate anymore. However,

gaining a function would mean that the protein can interact with different substrates or

at least interact with the same substrate in a completely new way [202].

4.5 Biological Reasoning Emerges from Sequences

Amino acids are the representation unit of a protein. As mentioned, roughly 20 amino

acids are needed to build a protein sequence. These amino acids share similar chemical

properties. For example, Arginine (R) and Lysine (K) are positively charged (basic)

amino acids, while Aspartic Acid (D) and Glutamic Acid (E) are negatively charged

(acidic) amino acids. A non-conservative substitution from a hydrophobic amino acid

(aliphatic) like Valine (V) to a hydrophilic amino acid, such as Glutamic Acid,

consisting of an Aliphatic-Acid substitution, could significantly alter the protein

structure and function. Therefore, this study examines whether non-conservative

substitution relates to a LOF, GOF, or Neutral prediction. To investigate this, the amount

of non-conservative and conservative changes in each variant effect class was counted

(Figure 13).

A chi-squared test confirmed this finding (p < 0.0005), where H0 represented no

significant association between the non-conservative changes and the label itself, while

H1 was that there is an association between non-conservative changes and the label.

Therefore, it is indeed the case where mutations that change the class of amino acids

increase the chance of causing a GOF or LOF variant.



Figure 13: Counting the true labels of distinct variant effect instances regarding non-conservative and

conservative changes.

However, this finding does not imply that the model also captures this biological

context of non-conservative mutations. The same test was then evaluated using the

fine-tuned model's predicted labels, shown in Figure 14. In this case, the model

distribution for LOF and GOF variants with amino acid class changes is similar to that

seen in the original labels (p < 0.0005). Therefore, the model does capture the

biological reasoning behind non-conservative mutations and is more prone to predict

LOF and GOF classes in non-conservative mutations.



Figure 14: Counting the predicted labels of distinct variant effect instances regarding non-conservative

and conservative changes.

It was further evaluated how these variants are distributed across different

non-conservative and conservative mutations, which is exhibited in Figure 15.



Figure 15: Counting variants per predicted label in different mutations concerning the amino acid class.

In this case, the most relevant finding is that conservative mutations (for example, Aliphatic-Aliphatic) tend to cause neutral

variants. The higher prevalence of aliphatic-aliphatic variants is mostly due to most of the amino acids being Aliphatic (6/20). In contrast,



Aromatic and Basic amino acids are the second most frequent amino acid class (3/20, summing 6/20). The remaining classes (Acidic,

Hydroxylic, Sulfur-containing, and Amidic) are the least represented (2/20 each, summing 8/20). Conservative mutations are more likely to

be identified because they have a lower impact on survival during early developmental stages [203]. This is because conservative mutations

tend to be less detrimental to the subject [204]. Yet, this analysis shows that even conservative mutations can generate LOF, especially GOF

variants, with GOF being mostly Aliphatic-Aliphatic mutations. This requires further biological investigation.



4.6 Biological Complexity Impacts Model Quality

Genes and proteins serve a biological purpose. Significant changes in the charge of a

protein region may affect how a protein regulates itself [205], as in CHMP2B, which is

associated with ALS [206]. Some genes are more relevant to core biological functions

than others that may play a more supportive role. In this experiment, we investigate if a

given protein's biological role importance is implicitly represented by the sequence and,

thus, perceived by the model.

In particular, the FBN1 gene, which has been extensively researched in the

literature, appears to be highly susceptible to mutations leading to the loss of its

function [207]. This gene is associated with microfibrillar bundles, which play a role in

elastogenesis. Missense mutations in this gene are known to interfere with the assembly

of microfibrils through a loss-of-function and dominant-negative mechanism [208]. The

model predicted ~ 93% of the variants for this specific gene to be LOF, with an F1-score

of 99.2% observed. Therefore, the result of highly prevalent LOF predictions by the

model in this context is on par with what's known about the disruption of biological

capabilities in this gene [209]. This gene is associated with Marfan syndrome and lower

height in Peruvian populations [210]. The lack of life-threatening phenotypes associated

with these variants also affects how the mutations can spread through the population. In

this sense, it is reasonable that many LOF variants are present in the FBN1 gene.

However, this gene is also responsible for coding a large protein further proteolytically

cleaved near its C-terminal [211]. In other words, this could mean that the more relevant

sections of the protein are more concentrated in this specific region, meaning that

potentially, LOF variants in less important sections are less detrimental to the

individual. In this experiment, the context window restriction (1024 amino acids) might

also play a role in the full capability of the model to understand the variant effect for

long proteins.

Following this, it's reasonable to assume the model will better predict some

genes and worse in others. To investigate this hypothesis, we measured the percentage

of genes with F1-score higher than multiple thresholds, as shown in Figure 16. The

model was calculated to yield an F1-score > 0.75 for 89.62% of genes with GOF



variants, 87.43% with LOF variants, and 95.90% with Neutral variants on the hold-out

set.

Figure 16: Percentage of unique genes with Precision (A), Recall (B), and F1 Score (C) at different

cutoffs.

Genes with rare variants (therefore, underrepresented in the training set) yield

worse performance. Therefore, the model can generalize for unseen variants in the same

genes but seems to fail to generalize to poorly represented genes in the training set.



4.7 Protein Length Impacts the Model Performance

As mentioned above, it is valid to hypothesize that the larger the protein, the harder it

will be for the model to make accurate predictions. This is not only due to context

window limitations on the ESM-1v model but also due to Transformers and language

models' capabilities to retrieve information from a large context length

("needle-in-a-haystack" problem) [212-213]. In the dataset, the largest observed protein

in length is Titin, encoded by the TTN gene, corresponding to 35,992 amino acids. For

this, we investigated model performance in terms of F1-score across different protein

length inputs and found that the performance degrades slightly as protein length

increases (Figure 17). Instead, the phenomenon is observed for LOF and GOF labels.

Figure 17: Model performance (blue: Recall, green: F1-score, orange: Precision) at different protein

lengths and classes (A: LOF, B: Neutral, C: GOF). Moving average with window size = 50 was used for

better visualization.



4.8 Comparison with Existing Methods

Common missense predictors consider facts like the conservation of amino acid sites

across species and populations and protein folding effects. Some examples of predictors

are EVE [214], AlphaMissense [131], PrimateAI [215], PROVEAN [216], MetaRNN

[217], MetaSVM [218], REVEL [219], PERCH [220]. However, none of these

predictors are trained to infer LOF and GOF effects. Instead, Stein et al. [185] proposed

an ensemble method, LoGoFunc, for genome-wide LOF and GOF prediction based on

LightGBM with an initial step of structured feature engineering. In their study, they

resorted to NLP-based techniques to extract the variant labels from public datasets.

Alternatively, our study relies on data annotated by specialists. LoGoFunc reports

F1-scores of 0.56, 0.87, and 0.89 for GOF, LOF, and Neutral variants, respectively on a

fivefold cross-validation setup. In comparison, this work does not require structured

feature engineering, directly using the protein sequence, reporting F1-scores of 0.80,

0.76, and 0.93 for GOF, LOF, and Neutral variants, respectively, on the hold-out set.

However, this comparison should be done carefully since the datasets employed in both

works are different.

This work addresses the problem of the lack of a common benchmark dataset

with human and biologically-backed rules annotations that is reliable for downstream

tasks and model evaluation, as well as the usage of direct protein sequence for

predicting LOF, GOF, and Neutral variant effects in missense variants. It represents a

good contribution to the area and a building block toward a more comprehensive

understanding of pathophysiological mechanisms in disease-causing variants.



5 Conclusions
5.1 Final Considerations

This research's primary contribution is to establish a benchmark for variant effect

prediction, meticulously curated by geneticists and physicians at Mendelics Análise

Genômica S.A. The benchmark dataset, named Gain and Loss of Function Dataset

(GLOF) provides a solid foundation for future research and model development in

variant effect prediction, particularly in LOF and GOF variants.

The comparative analysis between ESM-2 and ESM-1v embeddings for LOF,

GOF, and Neutral variant effect prediction reveals that ESM-1v outperforms its more

recent counterpart, corroborating the findings of previous works. This insight highlights

the importance of selecting the most suitable protein embedding model for the specific

downstream task, as newer models may not always yield superior performance.

Moreover, this work presented a state-of-the-art end-to-end model for variant

effect prediction, as it does not require any intervention from the user apart of providing

the reference and alternative sequences. More important, this is done at the granularity

of GOF and LOF, which is crucial for understanding pathophysiological mechanisms in

genetic diseases. The proposed model eliminates the need for handcrafted feature

engineering by leveraging the comparison between wild-type (reference) and mutated

(alternative) proteins, streamlining the prediction process and potentially improving its

accuracy.

Besides, this study also delved into the model's behavior for distinct biological

interpretations, effectively demonstrating that the model captures some of the biological

reasoning behind variant effects, such as the impact of non-conservative variants and

gene function. Understanding the model performance and behavior in different

scenarios is a key contribution to the current demands of deep learning model

interpretability. It is essential for building trust in the model's predictions, facilitating its

adoption in clinical and research settings.

5.2 Study Limitations

The main limitation of this research is the lack of a diverse population for conducting

genetic validation across different populations. The claims made in this study are only

valid for populations represented in gnomAD, as the provided dataset is derived from



this resource. Consequently, this research inherits the population bias present in

gnomAD. Yet, gnomAD is quite representative, including data from 140,000 individuals

from various populations, such as African, Latino, East Asian, South Asian, and

non-Finnish European populations. However, there is still an overrepresentation of

European ancestry, limited representation of indigenous populations, bias towards

disease-specific studies or reference populations, and may not adequately represent

populations with a high rate of consanguinity, as the database primarily includes outbred

(non-consanguineous) populations. Although it is foreseen that this study is highly

expected to be generalizable to general populations due to the underlying dataset and

self-supervised learning-based modeling, future research should incorporate a more

diverse set of genetic variants from various world populations to increase the reliability

and generalizability of the findings.

Regarding the modeling approaches, the study oversimplified the best model

selection by using default hyperparameters before applying hyperparameter

optimization. The claim that Random Forest is the best model for this dataset would be

stronger if all models were compared after hyperparameter optimization. It would also

be interesting to validate these findings using wet lab experiments for variant effects and

model behavior, augmenting the study's ability to validate de novo variant effects. These

wet lab and clinical validations are also required to effectively consider these variants

annotations in clinical diagnosis per the ACMG/AMP guidelines [221].

5.3 Potential Applications

The proposed model has clinical and research applications. From a clinical perspective,

the model can support the diagnosis of genetic diseases in patients. Understanding the

effects of LOF or GOF variants is crucial for designing appropriate treatment plans and

ensuring that the treatment does not aggravate the patient's condition.

In terms of research, the proposed dataset constitutes a benchmark that can

stimulate new research in this area, and that can be used to develop more efficient

methods for classifying LOF and GOF variants, as well as to deepen our understanding

of disease mechanisms.



5.4 Future Work

As future work, it would be ideal to compare more versions of ESM (like ESM-1b,

ESM-1a) and other protein embeddings, potentially leveraging AlphaFold 3 efficient

latent representation of protein folding. This comparison would provide a more

comprehensive understanding of the performance and limitations of various embedding

models in the context of the variant effect prediction task. Furthermore, AlphaFold 3's

ability to foster new studies on protein-protein, protein-DNA, protein-RNA, and

protein-antibodies interactions will be essential for further understanding underlying

biological mechanisms that may explain the LOF or GOF effect on variants.

Further research is necessary to investigate whether the findings regarding the

predominance of conservative Aliphatic-Aliphatic amino acid changes in GOF variants

hold in a wider population study. This investigation could uncover underlying biological

mechanisms or determine if the observed pattern is a consequence of variant frequency

in the studied dataset.

A proper comparison with existing approaches, such as LoGoFunc, using the

proposed common benchmark is essential for further understanding the limitations and

strengths of each model. As the benchmark is publicly available, this research

encourages the development of new approaches for modeling variant effects that can

push the boundaries of human understanding of genetic variants beyond the scope of

this work.

Additionally, implementing hierarchical classification techniques in modeling

approaches may prove beneficial in managing class imbalance and the

underrepresentation of GOF variants. Moreover, statistical methods, like SVM,

particularly focused on anomaly detection, might assist in alleviating the intricate nature

of modeling infrequently occurring labels.

Alternatively, as LLMs are typically trained using an enormous corpus that

might eventually include biological sequences, they could be capable of predicting

proteins biological characteristics such as function. In this case, information retrieval

techniques may have a key role in assisting these LLMs to have the relevant information

(such as similar protein sequences) directly from the prompt.
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