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Game Theory is to the social sciences what Calculus is to the physical ones.

—Pedro Domingos



Abstract

Advances in Computer Science for applications of interest in Economics have

been growing large, motivated by the ubiquity of the Internet and its role as a pub-

lic open space used for markets. The field has been driven towards discussions in

Microeconomics under game-theoretical frameworks, which aim to model both con-

flicting and coalitional behavior of interacting agents. In this context, the problem

of finding equilibrium points in several types of games has received considerable

attention, motivating new theories within Computer Science. This work intends to

introduce and formalize the main concepts developed in recent decades to students

in Computing-related sciences at the undergraduate and initial graduate level.

Keywords: Algorithms, Computational Complexity, Game Theory.
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Resumo

Avanços em Computação para aplicações de interesse em Economia têm se in-

tensificado, motivados pela ubiquidade da Internet e seu papel como espaço público

aberto usado para transações. A área tem se debruçado sobre discussões em Microe-

conomia sob domínios de Teoria dos Jogos, que busca modelar ambos comportamen-

tos cooperativos e competitivos de agentes em interação. Neste contexto, o problema

de encontrar pontos de equilíbrio em diversos tipos de jogos tem recebido atenção

substancial, motivando novas teorias em Ciência da Computação. Este trabalho tem

por intuito introduzir e formalizar os conceitos basilares desenvolvidos em décadas

recentes para estudantes de ciências relacionadas à Computação ao nível de gradua-

ção e iniciantes de pós-graduação.

Palavras-chave: Algoritmos, Complexidade Computacional, Teoria dos Jogos.
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1 Introduction

Algorithmic Game Theory, alternatively called Economics and Computation, is the study

of algorithm design for problems arising in game-theoreticalmodels. According to (Rough-

garden, 2016), the interplay between Economics and Computing emerged due to many

problems of interest in the modern Computer Science, from resource allocation to on-

line advertising, “fundamentally involving interaction between multiple self-interested

parties.”

Whilst this area of knowledge has given many fruitful results in the last 15 years,

most of the literature available for newcomers is reserved for experienced theoretical com-

puter scientists and mathematicians. This work aims to provide a comprehensive yet-not-

exhaustive introduction to students at the undergraduate level whose curiosity might lead

them to study such topics.

1.1 Motivation

1.1.1 Why study Game Theory?

Game Theory can be thought of as an outgrow of Microeconomics, a broader area of

Economics concerned with individual markets and industries. Microeconomics deals with

the analysis of how economic activity is organized under scarce resources to be allocated

among competing uses (Mankiw, 2016). Game Theory can be classified then as a method:

the use of mathematical tools in order to model both competitive and coalitional behavior

of interacting agents.

Such tools delve deep into the apparatus of Operations Research and serve as guide

to business as both policy- and decision-makers:

Operations research and market research, along with motivational research, are

considered crucial and their results assist, in more than one way, in taking busi-

ness decisions. […] Research with regard to demand and market factors has

great utility in business. Given knowledge of future demand, it is generally not

difficult for a firm, or for an industry to adjust its supply schedule within the

limits of its projected capacity. Market analysis has become an integral tool of

business policy these days. Business budgeting, which ultimately results in a
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projected profit and loss account, is based mainly on sales estimates which in

turn depends on business research. Once sales forecasting is done, efficient pro-

duction and investment programmes can be set up around which are grouped

the purchasing and financing plans. Research, thus, replaces intuitive business

decisions by more logical and scientific decisions. (Kothari, 2004, page 6)

as well as governments:

Government has also to chalk out programmes for dealing with all facets of the

country’s existence and most of these will be related directly or indirectly to

economic conditions. The plight of cultivators, the problems of big and small

business and industry, working conditions, trade union activities, the problems

of distribution, even the size and nature of defence services are matters requiring

research. Thus, research is considered necessary with regard to the allocation of

nation’s resources. (Kothari, 2004, page 6)

1.1.2 The Role of Computing

Discrete optimization started to get traction in 1950 when Linear and Integer Program-

ming were formulated and Operations Research as a whole got intensive attention (Schri-

jver, 2005). Even then, according to (Lawler, 2011), up until the 1970s, combinatorial

problems were still thought of to be trivial, “devoid of mathematical content,” by pure

mathematicians, who would often suggest to enumerate all possible solutions to a given

problem and choose the best one according to a selected criteria. Naïve approaches to

solve problems of discrete nature, however, may take unreasonable amount of time:

This line of reasoning is hardly satisfying to one who is actually confronted with

the necessity of finding an optimal solution to one of these problems. A naïve,

brute force approach simply will not work. Suppose that a computer can be

programmed to examine feasible solutions at the rate of one each nanosecond,

i.e., one billion solutions per second. Then if there are 𝑛! feasible solutions, the

computer will complete its task, for 𝑛 = 20 in about 800 years, for 𝑛 = 21 in

about 16,800 years, and so on. Clearly, the running time of such a computation

is effectively infinite. (Lawler, 2011, page 4)

Likewise for GameTheory, both economists andmathematicians havemainly taken

approaches with emphasis in exact solutions and characterizations, with no regards for

2



computational issues. Computer Science has taken the role of investigating procedures –

algorithms – capable of solving such problems in an acceptable time, finding approximate

solutions when finding exact ones are unrealistic, as well as the limits of the computation

involved.

1.2 Objective

A textbook is a compilation of content with the purpose to teach a particular subject (OUP,

2018). The objective of this work is to provide a textbook on the study of optimization

and algorithms with the purpose to introduce the reader on the discipline of Algorithmic

Game Theory.

As this work intends to be an introduction for advanced undergraduate and initial

graduate students, at the end of this document the student should be able to understand

how the Internet motivates the study of Algorithmic Game Theory; to identify problems

of combinatorial nature in Computer Science that fit into game-theoretical frameworks;

as well as to identify some properties of combinatorial problems that make 𝒩𝒫 theory

inadequate. Although not strictly required, the student familiar with Linear Programming

or Lagrangean Methods should find it easier to absorb some of the concepts in this mono-

graph.

1.3 Method

The method taken in the formulation of this monograph is based on an extensive revision

and content analysis regarding topics approaching both the field ofAlgorithms (Roughgar-

den, 2016; Bertsimas and Tsitsiklis, 1997; Nisan et al., 2007; Papadimitriou, 2001, 1994)

and Game Theory (Leyton-Brown and Shoham, 2008) and Microeconomics (Mankiw,

2016), with occasional related areas filling in the gaps required for further proof of con-

cepts for both subjects, such as Optimization and Topology. We begin by presenting fun-

damental concepts on both fields and weave them together on the second half of this doc-

ument under modern Computer Science lens.

3



1.4 Text Organization

The text is organized as follows:

• Chapter 2 first presents the concepts of games, what is a game in normal form,

utility function and payoffs, Linear Optimization, equivalence between zero-sum

games and Duality Theory and the case for general games.

• Chapter 3 is concerned with introducing the concept of taxonomy of problems, de-

scribing special sets in Theory of Computation that seek to understand problems for

which a solution is guaranteed to exist, the reasoning behind their existence, as well

as the concept of completeness and how it relates to Game Theory problems.

• Chapter 4 carries on the notion of totality developed earlier to provide the reasoning

of existence of equilibrium for general games and its implications for Computer

Science as whole.

• Chapter 5 contains the closing thoughts and final considerations of the work, as well

as indications to where future works could improve upon this monograph.

4



2 Fundamental Concepts

This section intends to briefly introduce readers to fundamental concepts needed to un-

derstand the problems approached in this work. Readers familiar with the disciplines

presented here may skip without loss.

2.1 Games

2.1.1 What are games?

Games, as in Economics, are situations where agents (players) must interact in some way

and each agent has a valuation on the arrangement of the strategic decisions taken by the

all players. An example is the traditional Rock-Paper-Scissors between two players:

Rock Paper Scissors

Rock (0, 0) (−1, 1) (1,−1)

Paper (1,−1) (0, 0) (−1, 1)

Scissors (−1, 1) (1,−1) (0, 0)

(2.1)

Bimatrix (2.1) represents a Rock-Paper-Scissors, each tuple represents the payoff

of the row and column players, respectively.

2.1.2 Games on Normal Form

A finite, 𝑛-person game, is defined as tuple (𝑁, 𝑆, 𝑢):

i. 𝑁 the set of 𝑛 players;

ii. 𝑆 = 𝑆1 × ⋯ × 𝑆𝑛 the cartesian product between available strategies, also called

actions, in 𝑆𝑖 for each player 𝑖;

iii. 𝑢 = (𝑢1,… , 𝑢𝑛) the utility functions for each player that maps an action profile

s ∈ 𝑆 to a real number, or, more succinctly 𝑢𝑖 ∶ 𝑆 ↦ ℝ.

The Rock-Paper-Scissors indicated in the preceding subsection fits this descrip-

tion as a two-player game, where each player has three available strategies (rows and

5



columns of the tableau) and the tuples (𝑢1, 𝑢2) represent the valuation for each action pro-

file.

Whenever speaking about games, the assumption of rationality is taken, that is:

each player aims to maximize its utility function. Beware that this not only means the

players are motivated to strive to maximize their utility, it implies that every player always

maximizes his utility, thus being able to perfectly calculate the probabilistic result of every

action.

2.2 Linear Programming

Linear Programming (LP), also known as Linear Optimization, is a class of optimization

problems where both the objective function and constraints are linear functions. More

generally,

min𝑥 𝑐′𝑥

s.t. 𝑥 ∈ 𝑃

where 𝑃 a is polyhedron of the form 𝑃 = {𝑥 ∈ ℝ𝑛 ∣ 𝐴𝑥 ⪋ 𝑏}. Inequalities in the

polyhedron definition can be turned into equalities through the introduction of slack and

surplus variables (see Bertsimas and Tsitsiklis, 1997). When 𝑃 is in the form 𝑃 = {𝑥 ∈

ℝ𝑛 ∣ 𝐴𝑥 = 𝑏, 𝑥 ⩾ 0}, we say it is in the standard form, otherwise it is in the canonical

form.

Here we give a brief overview of important aspects of the Linear Programming

field and its contributions to the Theory of Computation.

2.2.1 Duality Theory

Duality Theory is a tool that enable us to analyze the relationship between different in-

stances of optimization problems. Its applicability can be easily generalized for optimiza-

tion beyond Linear Programming. The explanation here is due to (Bertsimas andTsitsiklis,

1997), though with a different example, and we refer to it for deeper intuition behind the

6



geometry and economic interpretation of the dual. We start with the problem

min𝑥 𝑐′𝑥

s.t. 𝐴𝑥 ⩾ 𝑏,

which we call the primal, with an optimal solution 𝑥∗ assumed to exist. By introducing

the Lagrange multipliers 𝑝 with the same dimension as 𝑏, we can remove the constraints

and put them in the objective function.

min𝑥 𝑐′𝑥 + 𝑝′(𝑏 − 𝐴𝑥) (𝐿)

Under optimal cost, the above problem should have cost no greater than 𝑐′𝑥∗:

min𝑥[𝑐′𝑥 + 𝑝′(𝑏 − 𝐴𝑥)] ⩽ 𝑐′𝑥∗ + 𝑝′(𝑏 − 𝐴𝑥∗) = 𝑐′𝑥∗

Define 𝑔(𝑝) to be a function of the lagrangean with respect to 𝑝 and optimize it to find the

infimum of the relation above, we have:

max𝑝 𝑔(𝑝) = max𝑝min𝑥[𝑐′𝑥 + 𝑝′(𝑏 − 𝐴𝑥)]

= max𝑝[𝑝′𝑏 +min𝑥(𝑐′ − 𝑝′𝐴)𝑥].

By the second equality, we notice the quantity 𝑝′𝑏 sets the infimum for the lagrangean

for choices of 𝑥 and, consequently, the primal. Notice, too, since 𝑥 has no restriction on

sign, the only way to ensure the lagrangean amounts to a finite quantity is by restricting

values of 𝑝 such that 𝑝′𝐴 = 𝑐. By the first equality, we have 𝑏−𝐴𝑥 which we know to be

a nonpositive quantity, by construction of the lagrangean, multiplying 𝑝. Allowing 𝑝 to

take on negative values would imply max𝑝 𝑔(𝑝) = ∞ for any 𝑏 − 𝐴𝑥 < 0, so we restrict

our choices to 𝑝 ⩾ 0.

7



The preceding discussion sets down the constraints for our dual:

max𝑝 𝑝′𝑏

s.t. 𝑝′𝐴 = 𝑐,

𝑝 ⩾ 0

Repeated construction of the procedure for the dual above leads to the same lagrangean

stated in 𝐿, which proves

Theorem 2.1. The dual of the dual is the primal.

One can see that the cost vector 𝑐 for the primal relates to the dual as constraints and,

conversely, the vector 𝑏 of constraints for the primal relates to the dual as its cost vector.

Sign constraints on each of the decision variables for the primal produce inequality and

equality constraints on the dual and, conversely, inequality or equality constraints on the

dual set up sign constraints in the variables of the primal.

Theorem 2.2. (LP Weak Duality) 𝑐′𝑥 ⩾ 𝑝′𝑏

Proof. Since, by construction, the sign of 𝑐 − 𝑝′𝐴 is the same as that of 𝑥 (or equals 0)

and 𝐴𝑥−𝑏 is the same as of 𝑝′ (or, again, equals 0), then both (𝑐−𝑝′𝐴)𝑥 and 𝑝′(𝑏−𝐴𝑥)

are nonnegative and so is their sum

(𝑐′ − 𝑝′𝐴)𝑥 + 𝑝′(𝐴𝑥 − 𝑏) ⩾ 0

𝑐′𝑥 − 𝑝′𝐴𝑥 + 𝑝′𝐴𝑥 − 𝑝′𝑏 ⩾ 0

𝑐′𝑥 ⩾ 𝑝′𝑏 (2.2)

which proves our claim. �

The above is a result known as weak duality. It is straightforward from inequality

(2.2) that:

Corollary 2.2.1. If there exists primal-feasible 𝑥 such that 𝑐′𝑥 = 𝑝′𝑏 for any dual-

feasible 𝑝, then such 𝑥 is optimal for the primal, and so is 𝑝 for the associated dual.

Corollary 2.2.2. If the primal is unbounded, the dual is infeasible.

8



Theorem 2.3. (Farkas’s Lemma, 1902) Let 𝐴 be a matrix of dimensions 𝑚× 𝑛 and let

𝑏 be a vector in ℝ𝑚. The following proposition is true:

∄𝑥 ⩾ 0 ∶ 𝐴𝑥 = 𝑏 ⟺ ∃𝑝 ∶ 𝑝′𝐴 ⩾ 0, 𝑝′𝑏 < 0

Proof. ( ⟸ ) Suppose 𝑥 ⩾ 0 ∶ 𝐴𝑥 = 𝑏. If 𝑝′𝐴 ⩾ 0, then, multiplying both sides by 𝑥

yields 𝑝′𝐴𝑥 ⩾ 0. Since both 𝑝′𝐴 and 𝑥 are assumed to be ⩾ 0, 𝑝′𝐴𝑥 = 𝑝′𝑏 < 0 can’t

hold.

(⟹ ) Suppose the set 𝐴𝑥 = 𝑏, 𝑥 ⩾ 0 to be empty. We define the cone

𝑄 = {𝑦 ∣ 𝐴𝑥 = 𝑦, 𝑥 ⩾ 0}

into which 𝑏 is not contained. By application of the hyperplane separating theorem, we

can define 𝑝 such that 𝑝′𝑏 < 𝑝′𝑦 for all 𝑦 ∈ 𝑄.

We first note that since 0 ∈ 𝑄, then 𝑝′𝑏 < 0. Denoting 𝐴𝑖 as the 𝑖th column of 𝐴,

𝜆𝐴𝑖 ∈ 𝑄, 𝜆 > 0 – to see this consider1 𝑥 = 𝜆𝑒𝑖. So,

𝑝′𝑏 < 𝜆𝑝′𝐴𝑖

𝑝′𝑏
𝜆 < 𝑝′𝐴𝑖

lim
𝜆→∞

𝑝′𝑏
𝜆 < 𝑝′𝐴𝑖

0− < 𝑝′𝐴𝑖,

where 0− means that the limit approaches zero by the left.

Since this is true for all 𝑖, we can conclude 𝑝′𝐴 ⩾ 0′. �

Corollary 2.3.1. Let 𝑝′𝑏 ⩾ 0 and 𝑝′𝐴 ⩾ 0, 𝑏 can be expressed as a conic combination

of the columns of 𝐴.

Theorem 2.4. (Variant of Farkas’s Lemma, 1902) Let𝐴 be a matrix of dimensions𝑚×𝑛

and let 𝑏 be a vector in ℝ𝑚. It is true that:

∄𝑥 ∶ 𝐴𝑥 ⩾ 𝑏 ⟺ ∃𝑝 ⩾ 0 ∶ 𝑝′𝐴 = 0′, 𝑝′𝑏 > 0

1. We use the notation 𝑒𝑖 to denote a vector of any dimension with the 𝑖-th entry set to 1 and the remaining
set to 0.
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Proof. (⟸ ) Suppose 𝐴𝑥 ⩾ 𝑏. If 𝑝′𝐴 = 0′ and 𝑝 ⩾ 0, then, multiplying both sides by

𝑝′ yields 𝑝′𝐴𝑥 ⩾ 𝑝′𝑏. Since 𝑝′𝐴 = 0′, 𝑝′𝑏 > 0 can’t hold.

(⟹ ) Suppose the set 𝐴𝑥 ⩾ 𝑏 to be empty. We define the polyhedron

𝑄 = {𝑦 ∣ 𝐴𝑥 = 𝑦}

for which 𝑏 is not defined. By application of the hyperplane separating theorem, we define

𝑝 and 𝜖 such that

𝑝′𝑏 > 𝜖 and 𝑝′𝑦 ⩽ 𝜖.

We first note that since 0 ∈ 𝑄, then 𝑝′𝑏 > 𝜖 ⩾ 0. Denoting 𝐴𝑖 as the 𝑖th column of

𝐴, for 𝑥 = 𝜆𝑒𝑖, 𝜆 > 0. We have,

𝜆𝑝′𝐴𝑖 ⩽ 𝜖

𝑝′𝐴𝑖 ⩽
𝜖
𝜆

𝑝′𝐴𝑖 ⩽ 0 (as 𝜆 → +∞)

Analogously, for 𝑥 = 𝜆𝑒𝑖, 𝜆 < 0.

𝜆𝑝′𝐴𝑖 ⩽ 𝜖

𝑝′𝐴𝑖 ⩾
𝜖
𝜆

𝑝′𝐴𝑖 ⩾ 0 (as 𝜆 → −∞)

Since this is true for all columns of 𝐴, we conclude then 𝑝′𝐴 = 0.

Finally, for any vector 𝑦 ∈ 𝑄 this means ∃ 𝑖 ∶ 𝑦𝑖 < 𝑏𝑖, so we can add to 𝑦 a vector

𝑠 ⩾ 0 such that 𝑦𝑖 + 𝑠𝑖 lies closer to the halfspace2 𝑎′𝑖𝑥 ⩾ 𝑏𝑖 potentially lying on the

boundary 𝑝′𝑣 = 𝜖 or on the other side of the hyperplane. Thus, for vector 𝑠 with sufficient

2. by 𝑎𝑖 we mean the 𝑖th row vector of 𝐴
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large entries,

𝑝′(𝑦 + 𝑠) ⩾ 𝜖

𝑝′𝑦 + 𝑝′𝑠 ⩾ 𝜖

𝑝′𝑠 ⩾ 𝜖 − 𝑝′𝑦

𝑝′𝑠 ⩾ 0

As 𝑠 ⩾ 0, so must be 𝑝 for 𝑝′𝑠 ⩾ 0 to be satisfied. �

Farka’s lemma tells us feasibility in one system is a certificate of infeasibility in

another, and it is useful to prove the following theorem without relying on exploitation of

termination rules of iterative algorithms that solve LP.

Theorem 2.5. (LP Strong Duality) Whenever an optimum 𝑥∗ exists in the primal, there

exists a 𝑝∗ optimal in the dual. Moreover, 𝑐′𝑥∗ = (𝑝∗)′𝑏.

Proof. Let the following pair of primal-dual be our problems under consideration.

min𝑥 𝑐′𝑥

s.t. 𝐴𝑥 ⩾ 𝑏

max𝑝 𝑝′𝑏

s.t. 𝑝′𝐴 = 𝑐,

𝑝 ⩾ 0

Suppose both primal and dual to have feasible solutions, the dual holding optimal ℎ. By

weak duality, it’s trivial that if we prove the existence of feasible 𝑥∗ such that 𝑐′𝑥∗ ⩽ ℎ,

then 𝑥∗ is an optimal solution to the primal. By hypothesis we neglect the existence of

this solution, then by Farkas’s lemma,

∄𝑥 ∶ [
𝐴

−𝑐′
] [𝑥] ⩾ [

𝑏

−ℎ
] ⟺ ∃𝑝 ⩾ 0, 𝜆 ⩾ 0 ∶ [

𝑝

𝜆
]

′

[
𝐴

−𝑐′
] = 0′, [

𝑝

𝜆
]

′

[
𝑏

−ℎ
] > 0

which results in 𝑝′𝐴 = 𝜆𝑐′ and 𝑝′𝑏 > 𝜆ℎ.

If we assume 𝜆 = 0, then 𝑝′𝐴 = 0′ and 𝑝′𝑏 > 0, which implies the inexistence of

𝑥 such that 𝐴𝑥 ⩾ 𝑏, contradicting our assumption of feasibility for the primal. For 𝜆 > 0,

for ̄𝑝 to satisfy ̄𝑝′𝐴 = 𝑐 it must be that ̄𝑝 = 1
𝜆𝑝, which is feasible by nonnegativity of 𝑝
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and 𝜆, however, 1
𝜆𝑝

′𝑏 > ℎ which contradicts the assumption that ℎ is the optimal in the

dual.

We conclude ∃𝑥 ∶ 𝐴𝑥 ⩾ 𝑏 with 𝑐′𝑥 ⩽ ℎ. As ℎ is the optimal for the dual, it

follows from weak duality that 𝑐′𝑥 = ℎ. �

Theorem 2.5 a is remarkable result and it allows us to show that optimizing a linear

program is no harder than answering if a polyhedron is nonempty. Let 𝑃 ..= {𝑥 ∣ 𝐴𝑥 ⩾ 𝑏}

the polyhedron defined for the primal and 𝑄 ..= {𝑝 ∣ 𝑝′𝐴 = 𝑐, 𝑝 ⩾ 0} the polyhedron

defined for the dual. We need to find a solution for systems of linear inequalities

𝑐′𝑥 = 𝑝′𝑏 𝐴𝑥 ⩾ 𝑏

𝑝′𝐴 = 𝑐 𝑝 ⩾ 0

In other words, if there is an oracle that given the polyhedron 𝑆 = {𝑥 ∈ 𝑃, 𝑝 ∈ 𝑄 ∣ 𝑐′𝑥 =

𝑝′𝑏} is capable of correctly finding a point in S or reports that none exists, this oracle

solves the linear programs under considerations.

2.3 Zero-sum games and Nash equilibrium

In competitive games, there’s a special type of game called constant sum games, where

for any strategy profile the sum of all player’s payoffs is equal to some constant. For two-

player games, in order to simplify, we fix this constant at 0 and let the payoff of player 2

be the negative of player 1. Such games are called zero-sum games.

In order to illustrate this concept, we work on a resolution to Exercise 4.10 pro-

posed in (Bertsimas and Tsitsiklis, 1997), stated as:

Consider the standard form problem of minimizing 𝑐′𝑥 subject to 𝐴𝑥 = 𝑏 and

𝑥 ⩾ 0. We define the Lagrangean by

𝐿(𝑥, 𝑝) = 𝑐′𝑥 − 𝑝′(𝐴𝑥 − 𝑏).

Consider the following “game”: player 1 chooses some 𝑥 ⩾ 0, and player 2

chooses some 𝑝; then, player 1 pays to player 2 the amount 𝐿(𝑥, 𝑝). Player 1

would like to minimize 𝐿(𝑥, 𝑝), while player 2 would like to maximize it. A

pair (𝑥∗, 𝑝∗), with 𝑥∗ ⩾ 0, is called an equilibrium point (or a saddle point, or
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a Nash equilibrium) if

𝐿(𝑥∗, 𝑝) ⩽ 𝐿(𝑥∗, 𝑝∗) ⩽ 𝐿(𝑥, 𝑝∗), ∀𝑥 ⩾ 0, ∀𝑝.

Show that a pair (𝑥∗, 𝑝∗) is an equilibrium if and only if 𝑥∗ and 𝑝∗ are optimal

solutions to the primal under consideration and its dual, respectively.

min𝑥 𝑐′𝑥

s.t. 𝐴𝑥 = 𝑏,

𝑥 ⩾ 0

(𝒫)

max𝑝 𝑝′𝑏

s.t. 𝑝′𝐴 ⩽ 𝑐, (𝒟)

Theorem 2.6. The equilibrium pair of strategies (𝑥∗, 𝑝∗) is precisely the corresponding

solutions to the primal 𝒫 and its dual𝒟.

Proof. (⟹ ) Let (𝑥∗, 𝑝∗) be a saddle point. So that:

i. 𝐿(𝑥∗, 𝑝) ⩽ 𝐿(𝑥∗, 𝑝∗)

ii. 𝐿(𝑥∗, 𝑝∗) ⩽ 𝐿(𝑥, 𝑝∗)

We need to show 𝑥∗ and 𝑝∗ constitute optimal solutions to primal and dual.

For i.,

𝑐′𝑥∗ + 𝑝′(𝑏 − 𝐴𝑥∗) ⩽ 𝑐′𝑥∗ + (𝑝∗)′(𝑏 − 𝐴𝑥∗)

𝑝′(𝑏 − 𝐴𝑥∗) ⩽ (𝑝∗)′(𝑏 − 𝐴𝑥∗)

can only hold with equality by choosing 𝑥∗ such that 𝐴𝑥∗ = 𝑏.

For ii.,

𝑐′𝑥∗ + (𝑝∗)′(𝑏 − 𝐴𝑥∗) ⩽ 𝑐′𝑥 + (𝑝∗)′(𝑏 − 𝐴𝑥)

(𝑝∗)′𝑏 + (𝑐 − (𝑝∗)′𝐴)𝑥∗ ⩽ (𝑝∗)′𝑏 + (𝑐 − (𝑝∗)′𝐴)𝑥

(𝑐 − (𝑝∗)′𝐴)𝑥∗ ⩽ (𝑐 − (𝑝∗)′𝐴)𝑥

13



holds by choosing 𝑥∗𝑖 = 0 ∀𝑖 ∶ 𝑎′𝑖𝑝∗ < 𝑐𝑖 and letting 𝑥𝑖 → +∞ on the right-hand side

whilst 𝑐 − (𝑝∗)′𝐴 ⩾ 0. We conclude 𝑥∗ is optimal solution to 𝒫.

After establishing (𝑐 − (𝑝∗)′𝐴)𝑥∗ = 0, it follows that

(𝑝∗)′𝑏 ⩾ 𝑝′𝑏 + (𝑐 − 𝑝′𝐴)𝑥∗ ⩾ 𝑝′𝑏.

Thus, 𝑝∗ is optimal solution to𝒟.

(⟸ ) Let 𝑥∗ and 𝑝∗ be optimal solutions to 𝒫 and𝒟:

For 𝐿(𝑥∗, 𝑝) and 𝐿(𝑥∗, 𝑝∗), by optimality of 𝑥∗ for the primal, we have that 𝐴𝑥∗ =

𝑏, so the Lagrangeans

𝐿(𝑥∗, 𝑝) = 𝐿(𝑥∗, 𝑝∗) = 𝑐′𝑥∗.

So proposition i. is true.

For 𝐿(𝑥, 𝑝∗), rearranging the Lagrangean to

𝐿(𝑥, 𝑝∗) = (𝑐′ − 𝑝∗𝐴)𝑥 + (𝑝∗)′𝑏

by optimality of 𝑝∗ for the dual and 𝑥 ⩾ 0, (𝑐′−𝑝∗𝐴)𝑥 amounts to a nonnegative quantity

and, by strong duality in Theorem 2.5, (𝑝∗)′𝑏 = 𝑐′𝑥∗. So

𝐿(𝑥, 𝑝∗) = (𝑐′ − 𝑝∗𝐴)𝑥 + 𝑐′𝑥∗

and therefore

𝐿(𝑥∗, 𝑝) ⩽ 𝐿(𝑥∗, 𝑝∗) ⩽ 𝐿(𝑥, 𝑝∗).

So if player 1 fails to choose 𝑥∗ whereas player 2 is sucessful in choosing 𝑝∗, she

will pay (𝑐′−𝑝∗𝐴)𝑥more than theminimum that could be paid. Conversely, when player 1

chooses 𝑥∗, player 2 is indifferent about which strategy to play. In other words: no player

can increase its utility by unilaterally modifying their strategy. We call 𝐿(𝑥∗, 𝑝∗) = 𝑣 the

value of the game. �

The proof of Theorem 2.6 shows the equivalence between zero-sum games and LP

duality. In fact, the minimax theorem first proved by John von Neumann in 1928 through

means of fixed-point arguments comes out naturally as a corollary of strong duality (Sten-

14



gel, 2022). In simpler terms, let 𝐴 ∈ ℝ𝑚×𝑛 be the payoff matrix of the first player, such

that she needs to assign a probability distribution 𝑥 over the rows of 𝐴. Likewise, the

second player needs to assign a probability distribution 𝑦 over the columns of 𝐴. The

expected payoff for the first player is 𝑥′𝐴𝑦 and max𝑥min𝑦 𝑥′𝐴𝑦 is the value of the game.

Moreover,

max𝑥 min𝑦 𝑥′𝐴𝑦 = min𝑦 max𝑥 𝑥′𝐴𝑦 = 𝑣,

to see why this is true – and why the seemingly quadratic nature of optimization in 𝑥′𝐴𝑦 is

of no value – observe that once the player who goes first decides a strategy, the opponent

needs not to randomize, but simply choose the best response deterministically.

Theorem 2.7. max𝑥 min𝑦 𝑥′𝐴𝑦 = min𝑦 max𝑥 𝑥′𝐴𝑦

Proof.

max𝑥 min𝑦 𝑥′𝐴𝑦 = max𝑥 (
𝑛

min
𝑗=1

(𝑥′𝐴)𝑗) (2.3)

= max𝑥 (
𝑛

min
𝑗=1

𝑚
∑
𝑖
𝑥𝑖𝑎𝑖𝑗) (2.4)

Equation (2.4) can be stated as the following linear program:

max𝑞, 𝑥 𝑞

s.t. 1𝑞 − 𝑥′𝐴 ⩽ 0,

1′𝑥 = 1,

𝑥 ⩾ 0,

𝑥 ∈ ℝ𝑚,

𝑞 ∈ ℝ

(𝒫′)

By solving this linear program, player 1 arrives at the strategy vector 𝑥∗ that maxi-

mizes his payoff when player 2 plays optimally. It is straightforward from𝒫′ that 𝑞 attains

maximum equal to
𝑛

min
𝑗=1

∑𝑚
𝑖 𝑥𝑖𝑎𝑖𝑗. Doing the same for min𝑦max𝑥 𝑥′𝐴𝑦 results in the dual

of 𝒫′, which by strong duality proves our claim. �

Getting back to our example with Rock-Paper-Scissors, the payoff matrix for the
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row player is

𝐴 =
⎡
⎢
⎢
⎢
⎣

0 −1 1

1 0 −1

−1 1 0

⎤
⎥
⎥
⎥
⎦

.

Whereas the payoff matrix for the column player is −𝐴. Each of them aims to maximize

their respective payoffs, the row player faces the problem max𝑥min𝑦 𝑥′𝐴𝑦, and column

player, max𝑦min𝑥 𝑥′(−𝐴)𝑦 = −min𝑦max𝑥 𝑥′𝐴𝑦.

After solving the linear program

max𝑞, 𝑥 𝑞

s.t. 𝑥2 − 𝑥3 ⩾ 𝑞,

−𝑥1 + 𝑥3 ⩾ 𝑞,

𝑥1 − 𝑥2 ⩾ 𝑞,

𝑥1 + 𝑥2 + 𝑥3 = 1,

𝑥𝑖 ⩾ 0 𝑖 = 1, 2, 3

(Row player)

the row player maximizes his payoff with uniform probability distribution over the rows

of 𝐴, i.e., 𝑥∗1 = 𝑥∗2 = 𝑥∗3 =
1
3 . Conversely, the column player solves

min
𝑡, 𝑦

𝑡

s.t. 𝑦2 − 𝑦3 ⩽ 𝑡,

−𝑦1 + 𝑦3 ⩽ 𝑡,

𝑦1 − 𝑦2 ⩽ 𝑡,

𝑦1 + 𝑦2 + 𝑦3 = 1,

𝑦𝑖 ⩾ 0 𝑖 = 1, 2, 3

(Column player)

and also maximizes his payoff with uniform probability distribution over the columns of

𝐴.

We leave the discussion for games different than zero-sum to Chapters 3 and 4, but

state the following proposition here in advance:
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Proposition 2.3.1. (Nash) If the game is finite, a Nash Equilibrium always exists.

We also point out that for two-player nonzero-sum games, equilibrium computa-

tion is equivalent to quadratic programming (Mangasarian and Stone, 1964), but we leave

this discussion out the scope of this monograph.
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3 Taxonomy of Problems

In Computing, the standard way to classify problems is usually in the sense of 𝒫 ?= 𝒩𝒫

question. A problem is said to be in 𝒫 – which stands for Polynomial – if and only if

there is a deterministic algorithm which solves any instance of that problem with time

growth bounded by a polynomial function in the length of the input. A problem is said to

be in𝒩𝒫 – Nondeterministic Polynomial – if the validity of a certificate to a problem

instance can be verified in polynomial time in the length of the input.

Of course, 𝒫 ⊂ 𝒩𝒫 since given any certificate to a problem in 𝒫 we might just

compute the solution and compare it to the certificate. The open problem is whether 𝒫 is

a proper subset of𝒩𝒫 or not.

There exists a sense of “hierarchy” inside 𝒩𝒫 called𝒩𝒫-completeness. A prob-

lem is said to be𝒩𝒫-complete if and only if:

i. It belongs to𝒩𝒫;

ii. all problems in𝒩𝒫 are reducible to it through a polynomial-time reduction.

If ii. is true and i. is not, the problem is said to be𝒩𝒫-hard.

Completeness results are important in the discussion of Theory of Computation be-

cause if one could come up with a poly-time algorithm to solve any𝒩𝒫-complete problem

then all those in 𝒩𝒫 could be solvable in polynomial time in the length of its input. Up

until now, no such algorithm is known – and neither a proof that 𝒫 ≠ 𝒩𝒫.

The canonical problem from which 𝒩𝒫 problems arise is the satisfiability prob-

lem, shortened to Sat. The reduction of any problem in 𝒩𝒫 to Sat is done by clever

construction of a boolean circuitry that translates possible computations of a nondeter-

ministic Turing machine to boolean expressions that are satisfied if and only if the Turing

Machine accepts the language that represents the instance of the problem. We state the

theorem here without a proof, and the reader is referred to (Sipser, 2012) for detailed ex-

planation.

Satisfiability. (Sat)Given a boolean expression in clausal normal form (CNF)

composed of 𝑛 variables, report whether exists a boolean assignment for each

variable such that the given expression evaluates to 1 (true) or not.
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Theorem 3.1. (Cook-Levin) Sat is𝒩𝒫-complete.

𝑢 = 𝐴(𝑥)

𝑣 = 𝐵(𝑢)

𝑦 = 𝐶(𝑣)

𝑥 A

B

Polynomial-time
reduction pipeline

C 𝑦

Figure 1: General procedure for reducing one problem to another in polynomial time.

Figure 1 illustrates how reductions work. A problem instance 𝑥 ∈ 𝐿 is fed as input

to Algorithm A, which maps 𝑥 to an instance 𝑢 ∈ 𝐿′. Algorithm B computes certificates

for problems in 𝐿′, and returns 𝑣 such that 𝑣 is a certificate for 𝑢. Algorithm C maps 𝑣

to a valid certificate 𝑦 such that 𝑦 is a solution to 𝑥. All algorithms are assumed to run

in polynomial time and produce outputs bounded by polynomials in the length of their

respective inputs.

3.1 Total Function Problems

The notion briefly discussed above only applies to decision problems, where we expect

an answer Yes or No and much of the difficulty in solving such problems lies on the

uncertainty of the existence of a valid solution. It doesn’t make much sense to ask whether

there is a Nash equilibrium in a game or not, the answer is always positive – and if one

could come up with a reduction of Sat to Nash the answer would not translate back to a

valid answer for Sat, since a satisfiable assignment of truth values for an expression might

not exist. Just as Nash, there is a universe of problems for which a solution is guaranteed
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to exist. We collectively refer to such problems as Total Function Problems.

Definition. A search problem 𝐿 is defined by a relation 𝑅𝐿 ⊆ {0, 1}∗ × {0, 1}∗ such that

(𝑥, 𝑦) ∈ 𝑅𝐿 if and only if 𝑦 is a solution to 𝑥.

A search problem 𝐿 is called total if and only if ∀𝑥 ∃𝑦 ∶ (𝑥, 𝑦) ∈ 𝑅𝐿.

Definition. A problem 𝐿 is said to be in ℱ𝒩𝒫 – Function Nondeterministic Poly-

nomial – if and only if there exists a polynomial-time algorithm 𝐴𝐿(⋅, ⋅) and polynomial

function 𝑝𝐿(⋅) such that

i. ∀𝑥, 𝑦 𝐴(𝑥, 𝑦) = 1 ⟺ (𝑥, 𝑦) ∈ 𝑅𝐿

ii. ∀𝑥 ∶ ∃𝑦 ∶ (𝑥, 𝑦) ∈ 𝑅𝐿 ⟹ ∃𝑧 ∶ |𝑧| ≤ 𝑝𝐿(|𝑥|) ∧ (𝑥, 𝑧) ∈ 𝑅𝐿

Statement i. asserts a verifier algorithm𝐴𝐿 must be capable of correctly identifying

valid certificates for problem instance 𝑥. Statement ii. asserts for any solution 𝑦 to a prob-

lem instance 𝑥 there must be a certificate representation 𝑧 whose length is polynomially

bounded by the length of 𝑥.

Definition. (Total ℱ𝒩𝒫) 𝒯ℱ𝒩𝒫 = {𝐿 ∈ ℱ𝒩𝒫 ∣ 𝐿 is total}.

Whilst a convenient definition, 𝒯ℱ𝒩𝒫 is still a difficult class to study as whole,

mainly because the argument behind the existence of a solution for different problems

might differ. Due to this, 𝒯ℱ𝒩𝒫 is sometimes called a “semantic class.” Different argu-

ments providing existence of solutions call for an analog of 𝒩𝒫-completeness for other

domains of problems. Next, we discuss classes that relate to the concept of equilibrium in

Game Theory.

3.2 Polynomial Local Search

The prime problem to introduce the class 𝒫ℒ𝒮, Polynomial Local Search, is the Max-

Cut. Some definitions are required:

Definition. A network 𝒢 = (𝑉, 𝐸) is a connected graph featuring edges weighted with

nonnegative numbers which we refer to as capacities.
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Definition. A cut is a partition of 𝑉 into subsets3 𝐴 and 𝐴𝑐.

We call the sum of capacities from edges connecting vertices from 𝐴 to 𝐴𝑐 the cut

capacity. If we visualize the capacity of a cut as the cost of making the graph disconnected,

we have the following problem:

Maximal Cut Problem. Given a network 𝒢, find a cut such that its capacity

is at least the size of any other, i.e., a maximal cut.

Max-Cut is an 𝒩𝒫-hard problem, therefore a polynomial-time algorithm in the

size of 𝒢 that finds the optimal solution inexists unless 𝒫 = 𝒩𝒫 (Garey and Johnson,

1990). Local search is an heuristic utilized to provide feasible solutions formany problems

in𝒩𝒫-hard (Papadimitriou and Steiglitz, 1998), including the Max-Cut.

Algorithm 1: Local search for Max-Cut
Input: 𝒢 = (𝑉, 𝐸)
Output: (𝐴,𝐴𝑐) cut

begin
start with an arbitrary cut (𝐴,𝐴𝑐)

while there is local movement that improves the objective function do
take such a movement

end
return (𝐴,𝐴𝑐)

end

By local movement here, we mean: moving to𝐴𝑐 a vertex 𝑣 currently in𝐴 and vice

versa. The cost of the solution (when moving a vertex from 𝐴 to 𝐴𝑐 ) increments by an

additive factor

∑
ᵆ∈𝐴∶(ᵆ,𝑣)∈𝐸

𝑐ᵆ,𝑣 − ∑
ᵆ∈𝐴𝑐∶(ᵆ,𝑣)∈𝐸

𝑐ᵆ,𝑣. (3.1)

If this difference is positive, then it is a valid local movement. For the special case where

all edges capacities are the same, let it be 1, the objective function takes values in the set

{0, 1,… , |𝐸|} and updates the feasible solution at hand only when finding values strictly

3. Usually partition sets are required to be nonempty, but allowing so doesn’t affect the maximal cut
capacity.
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Figure 2: Local optimum of a maximal cut instance: 𝑣 ∈ 𝐴 are colored in blue, 𝑣 ∈ 𝐴𝑐
colored in pink.

greater for the objective function, the algorithm takes no more than |𝐸| iterations. How-

ever, for the general case with nonnegative edges, the algorithmmay take exponential time

in the number of vertices. Figure 2 illustrates a local maximum for a Max-Cut instance

with partitions being denoted by vertices’ colors. One can note that exchanging two ver-

tices between partitions achieve global maximum, but no local movement can increment

cut capacity; ergo, Algorithm 1 halts returning the illustrated partition.

If we interpret the steps of computation the algorithm takes over the local search

execution as vertices on a graph, we have a directed acyclic graph (dag) with each vertex

representing a possible cut for 𝒢. Directed edges to other vertices represent the local

movements available, the vertices representing local optima being sinks – vertices with no

outgoing edge – and the initial feasible solution being a source – vertex with no ingoing

edge. Such a graph is sometimes called transition graph in the literature.

Sink of dag. Given a source vertex in a directed acyclic graph (dag) 𝒢, find

a vertex with no outgoing edges.

Although the problem might seem trivial by means of usual traversal algorithms,

it is not the case here. For each vertex in 𝒢 there are two possible states when it comes to

making a cut: it either belongs to the partition 𝐴 or not, making a total of 2|𝑉|−1 possible

cuts. Thus we say the graph defined for Sink-of-Dag is exponential in the description of

the problemMax-Cut and Algorithm 1 may take exponential time in the size of 𝒢.
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Algorithm 2:Abstract local search
Input: local search instance
Output: a local optimum

begin
start with an arbitrary feasible solution𝑊

while there is feasible𝑊 ′ with better cost on the neighboorhood of𝑊 do
𝑊 ..= 𝑊 ′

end
return𝑊

end

Definition. A problem 𝐿 is said to be in 𝒫ℒ𝒮 if there is a polynomial-time algorithm

that reduces 𝐿 to a Sink-of-Dag instance.

Since, by definition, a dag must have at least one source (a vertex with no incident

edges) and a least one sink (a vertex with no outgoing edges), a solution is guaranteed to

exist. Thus, Sink-of-Dag belongs to 𝒯ℱ𝒩𝒫.

Algorithm 2 gives the general procedure for a local search. It is composed of three

implicit subroutines: verification of feasibility of a solution; inspection of neighboring

solutions4; and computation of a solution’s cost. All assumed to run in polynomial time

in the length of the input.

3.3 Congestion Games

Congestion games are a special type of game where each player has its strategy attached

to a set 𝐸 of resources, each resource with an accompanying cost function. The payoff of

a player being a function over the subset of resources each player has chosen. So along

with the tuple defined for the usual normal-form games, we consider:

i. a set 𝐸 of congestible resources;

ii. strategy sets 𝑆𝑖 ⊆ 2𝐸 for each player 𝑖;

iii. 𝑓𝑒 the number of agents that chooses an element 𝑒 ∈ 𝐸;

iv. the cost function 𝑐𝑒(⋅) for a congestible resource 𝑒.

4. We call neighborhood the set of solutions that differ from a given solution by a minimal possible
extent.
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For instance, resources can be edges in a flow network. The following flow network

defines the Bimatrix (3.2) for a two-player game. Each player has to decide which route

to take from 𝑠 to 𝑡.

𝑎

𝑠 𝑡

𝑏

𝑐𝑒(𝑓𝑒) = 1

𝑐𝑒(𝑓𝑒) = 2

𝑐𝑒(𝑓𝑒) = 𝑓2𝑒

𝑐𝑒(𝑓𝑒) = 𝑓2𝑒

Figure 3: Atomic routing game: routing through 𝑎 has payoff 1 + 𝑓2𝑒 and routing through
𝑏 has payoff 2 + 𝑓2𝑒 .

If both route through 𝑎, then 𝑓𝑒 = 2 for the edges (𝑠, 𝑎) and (𝑎, 𝑡), such that the

delay for them both is 𝑐𝑠,𝑎(𝑓𝑠,𝑎) + 𝑐𝑎,𝑡(𝑓𝑎,𝑡) = 1 + 4 = 5. Similarly, if both route through

𝑏, 𝑓𝑒 = 2 for the edges (𝑠, 𝑏) and (𝑏, 𝑡), with total delay 𝑐𝑠,𝑏(𝑓𝑠,𝑏) + 𝑐𝑏,𝑡(𝑓𝑏,𝑡) = 2 + 4 = 6.

However, in case they route through different paths, 𝑓𝑠,𝑎 = 𝑓𝑎,𝑡 = 1 and 𝑓𝑠,𝑏 =

𝑓𝑏,𝑡 = 1, so one who goes through 𝑎 gets 2 units of total delay, whereas the one who goes

through 𝑏 gets 3.

The particular case for congestion games with traffic networks is called routing

games and can be further categorized in atomic, in which each player have major contri-

bution to the flow state in the network, and nonatomic, in which each player individually

have negligible effect on the flow state. Nash equilibrium in such games is also called

equilibrium flow (Roughgarden, 2016).

𝑎 𝑏

𝑎 (5, 5) (2, 3)

𝑏 (3, 2) (6, 6)

(3.2)

In the atomic routing game depicted by the Bimatrix (3.2), it can be seen the pair

of strategies (𝑎, 𝑏) and (𝑏, 𝑎) constitute pure Nash equilibria, since no player can reduce

his cost by unilaterally changing the strategy profile. We introduce notation now to make

the concept of Nash equilibrium illustrated in Theorem 2.6 succint.
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Let 𝑁 be the set of players and 𝑆𝑖 the strategy set for each player 𝑖 ∈ 𝑁. We denote

the strategy player 𝑖 picks by 𝑠𝑖 ∈ 𝑆𝑖 and collectively refer to strategies chosen by other

players as s−𝑖, such that the strategy profile is s = (𝑠𝑖, s−𝑖).

Definition. (PureNash Equilibrium) A strategy profile s = (𝑠𝑖, s−𝑖) of a cost-minimization

game with cost function 𝐶𝑖 for each player 𝑖 ∈ 𝑁 is a pure Nash equilibrium (PNE) if

𝐶𝑖(s) ⩽ 𝐶𝑖(𝑠′𝑖, s−𝑖), ∀𝑖

and every unilateral deviation 𝑠′𝑖 ∈ 𝑆𝑖.

The definition of PNE for profit-maximization game is analogous, changing the

direction of the inequality.

We say that 𝑠𝑖 is a best response to s−𝑖.

Theorem 3.2. (Rosenthal, 1973) Every congestion game has at least one pure Nash

equilibrium.

Proof. Let s be an assignment of strategies for each player.

We define the potential function (also known as Rosenthal’s function)

𝜙(s) = ∑
𝑒∈𝐸

𝑓𝑒
∑
𝑖=1

𝑐𝑒(𝑖). (3.3)

When a given player 𝑖 unilaterally deviates from s by changing its congestible-

element set 𝑠𝑖 to 𝑠′𝑖 we have that

𝜙(𝑠′𝑖, s−𝑖) − 𝜙(s) = ∑
𝑒∈𝑠′𝑖⧵𝑠𝑖

𝑐𝑒(𝑓𝑒 + 1) − ∑
𝑒∈𝑠𝑖⧵𝑠′𝑖

𝑐𝑒(𝑓𝑒)

= ∑
𝑒∈𝑠′𝑖

𝑐𝑒(𝑓′𝑒 ) − ∑
𝑒∈𝑠𝑖

𝑐𝑒(𝑓𝑒)

= 𝐶𝑖(𝑠′𝑖) − 𝐶𝑖(𝑠𝑖). (3.4)

Here 𝑓′𝑒 is the number of players picking resource 𝑒 for strategy profile (𝑠′𝑖, s−𝑖).

The change in 𝜙 is the change in player 𝑖’s cost when deviating. Since there is a finite
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number of assignments of congestible resources, there is a minimum for 𝜙. �

One shall note that 𝜙(⋅) on its own has no meaningful interpretation, it just happens

that the change for 𝜙 under unilateral deviation is equal to the deviator’s change in payoff.

Any game with the property of being associated with a function of the form of equation

(3.4) is called potential game, and its PNE can be found by minimizing Rosenthal’s func-

tion (3.3).

Algorithm 3: Best-response dynamics
Input: a game of any form
Output: a PNE

begin
start with an arbitrary strategy profile s

while the outcome of s is not a PNE do
pick an arbitrary agent 𝑖 with an arbitrary beneficial deviation 𝑠′𝑖
s ..= (𝑠′𝑖, s−𝑖)

end
return s

end

Finally, we can show that congestion games belong to 𝒫ℒ𝒮 by computing a local

minimum throughmeans of best-response dynamics –Algorithm 3, the analogous for local

search in Game Theory.

Proposition 3.3.1. In potential games, regardless of initial strategy profile, best-response

dynamics always converge to a PNE.

Proof. Since the loop iterates strictly when there is a benefit for the deviator, the change

in the potential function 𝜙 as per equation (3.4) is always negative. By finiteness of the

game, there is a minimum and Algorithm 3 halts. �

For general games, one cannot expect Algorithm 3 to terminate in a game with no

PNE – e.g., Rock-Paper-Scissors, but even if there is a PNE in the game, best-response

dynamics might still get caught in a cycle. In the min-cost game of Bimatrix (3.5), the

PNE is the strategy profile (S, S), but if Algorithm 3 starts from (R, R) it loops indefinitely

through (R, R), (R, P), (P, P) and (P, R). It can never directly go to (S, S) because it is

never a unilateral deviation, nor go into (S, R), (S, P), (R, S) or (P, S) because no player

can get a negative change in payoff.
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R P S

R (−1, 1) (1,−1) (1, 1)

P (1,−1) (−1, 1) (1, 1)

S (1, 1) (1, 1) (−1,−1)

(3.5)

Regarding the number of iterations Algorithm 3 might take, we must notice that

in an 𝑛-player game, assuming each player to have a 𝑑 number of strategies, our 𝑛-matrix

would feature 𝑑𝑛 entries corresponding to strategy profiles, and each entry have 𝑛 num-

bers to describe the payoff of each player, totaling 𝑛𝑑𝑛 numbers. Each iteration requires

checking whether there’s a player with a better response to the current strategy profile

s, bounding Algorithm 3 to 𝒪(𝑛𝑑𝑛−1) evaluations of whether or not s is a PNE, with

𝒪(𝑑𝑛−1) local movements in the induced dag of the search problem – another case where

the transition graph might be exponentially large in the description of the problem just like

Max-Cut.

3.4 𝒫ℒ𝒮-completeness

We started the discussion stating that Max-Cut is the canonical problem fromwhich𝒫ℒ𝒮

arises, but defined 𝒫ℒ𝒮 in terms of Sink-of-Dag. Thereby, Sink-of-Dag is our complete

problem for𝒫ℒ𝒮 by definition. Formally, to sayMax-Cut is also𝒫ℒ𝒮-complete we need

to provide a polynomial-time reduction from Sink-of-Dag to Max-Cut.

Proving so requires proving another two problems, Circuit-Flip and Pos-Not-

All-Equal-3Sat5, to be 𝒫ℒ𝒮-complete and then providing a reduction from Pos-Not-

All-Equal-3Sat toMax-Cut. This was first proved by (Schäffer andYannakakis, 1991)

on a seminal paper showing several 𝒫ℒ𝒮 problems to be hard to solve. We do not show

the procedure here as it departs too much from our discussion on Game Theory. Readers

interested in 𝒫ℒ𝒮-reductions can also see (Borzechowski, 2016) for an extensive treat-

ment.

Theorem 3.3. (Schäffer and Yannakakis, 1991) All problems in 𝒫ℒ𝒮 are polynomial-

time reducible to Max-Cut.

5. Positive-weighted not-all-equal 3-Satisfiability.
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Once Max-Cut is known to be complete, we show next that congestion games are

also 𝒫ℒ𝒮-complete, by transitiveness of polynomial-time reduction.

Theorem 3.4. All problems in 𝒫ℒ𝒮 are polynomial-time reducible to the problem of

finding a pure Nash equilibrium in congestion games.

Proof. Let 𝒢 = (𝑉, 𝐸) be a Max-Cut instance with each edge 𝑒 ∈ 𝐸 having capacity 𝑤𝑒.

We map each vertex 𝑣 ∈ 𝑉 to a player. For each edge 𝑒 ∈ 𝐸, we instantiate two

resources 𝑟𝑒 and ̄𝑟𝑒. Each player 𝑣 has two strategies of congestible resources: 𝑠𝑣 = {𝑟𝑒}

for all 𝑟𝑒 such that 𝑣 ∈ 𝑒 and ̄𝑠𝑣 = { ̄𝑟𝑒} for all ̄𝑟𝑒 such that 𝑣 ∈ 𝑒. Thus, each resource asso-

ciated with an edge 𝑒 is available only for the two players corresponding to its endpoints.

Moreover, let 𝑛 = |𝑉|, since each player has 2 strategies, our 𝑛-matrix features 2𝑛 strategy

profiles, in perfect correspondence with the 2|𝑉| possible cuts6 in 𝒢.

Let 𝑘 be either ̄𝑟𝑒 or 𝑟𝑒, the cost functions are defined as

𝑐(𝑓𝑘) =
⎧

⎨
⎩

0 if 𝑓𝑘 = 1,

𝑤𝑒 else.

Players aim to minimize their costs.

Fix a cut (𝐴,𝐴𝑐). We establish the following bijection: a player 𝑣 who chooses

its strategy 𝑠𝑣 corresponds to a vertex 𝑣 in partition 𝐴, and 𝑣 who chooses the strategy ̄𝑠𝑣
corresponds then to a vertex 𝑣 in partition 𝐴𝑐.

Let 𝐶(𝐴,𝐴𝑐) be the capacity of the cut. The game has potential function

𝜙(s) = ∑
𝑒∈𝐸

𝑤𝑒 − 𝐶(𝐴,𝐴𝑐),

so maximizing the cut capacity is equivalent to minimizing Rosenthal function. Besides,

one can check that under unilateral deviation, the change in 𝜙 is equal to (3.1), appropri-

ately corresponding pure Nash equilibria – local minima in Rosenthal function – to local

maxima in Max-Cut. �

6. Previously, we stated that there are 2|𝑉|−1 cuts for𝒢 becausewewere adjusting the count for symmetric
cuts, e.g., 𝐴 = 𝑉 is equivalent to 𝐴 = ∅. One can check the game we are building preserves symmetry
also, meaning the payoff for playing a particular strategy depends only on the other strategies employed, not
on who is playing them. See Figure 3 and associated matrix for example.
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In Figure 2, vertices colored in blue correspond to players choosing their respec-

tive strategy sets 𝑠𝑣, and vertices colored in pink correspond to players choosing their

respective strategy sets ̄𝑠𝑣. An edge 𝑒 between vertices of same color contributes with 𝑤𝑒

to its corresponding players’ payoff each. Edges connecting vertices with different colors

contribute with zero to their costs.

3.5 When is PNE tractable?

Up until here we discussed the nature of problems in 𝒫ℒ𝒮 and argued that for complete

problems in this class, a polynomial-time algorithm inexists or is yet to be seen. A natural

question is whether or not we can find a PNE in polynomial time for particular instances.

We already know the case for two-player zero-sum games can be solved by means of

Linear Programming.

Linear Programmingwas first proved to solvable in polynomial time by (Khachiyan,

1979) by means of sequence of ellipsoids whose volume decreases at each iteration (see

Bertsimas and Tsitsiklis, 1997; Capozzo, 2011). We say Linear Programming belongs to

ℱ𝒫 – Function Polynomial.

Definition. A problem 𝐿 belongs toℱ𝒫 if there is an algorithm𝐴 that given any instance

𝑥 ∈ 𝐿, 𝐴 finds 𝑦 such that (𝑥, 𝑦) ∈ 𝑅𝐿 or reports that none exists with a number of steps

of computation bounded by a polynomial in the length of 𝑥.

So the case for zero-sum games is tractable. It turns out for symmetric routing

games – where all players share the same source and destination – the PNE can also be

efficiently found by means of Linear Programming, reducing the problem to a minimum-

cost flow (Fabrikant, Papadimitriou, and Talwar, 2004) with an amount of flow to be sent

from source to sink equal to the number of agents playing the game.

The reduction is as follows: let 𝑛 be the number of players, for every edge 𝑒,

instantiate 𝑛 parallel edges, each 𝑖-th edge with cost 𝑐𝑒(𝑖) and capacity equals to 1. So our

game depicted in Figure 3 would become the min-cost flow problem in Figure 4.

The solution for min-cost flow would translate back to a PNE by using the number

of parallels flows between each pair of vertices as the allocation of agents to the respective

resource in the routing game.
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Figure 4: Min-cost flow for the atomic routing game in Figure 3.

So we know ℱ𝒫 ⊆ 𝒫ℒ𝒮. Whether or not ℱ𝒫 is a proper subset of 𝒫ℒ𝒮 is still an

open-problem in Computer Science. And even if a proof could show 𝒫ℒ𝒮 = ℱ𝒫, a local

search heuristic, in Algorithm 2, can potentially run in exponential time, so an efficient

algorithm is yet to be seen, if it exists.
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4 𝒫𝒫𝒜𝒟 and Nash Equilibria

4.1 From Combinatorics...

Just like 𝒫ℒ𝒮 class, another major class of interest which relates to the concepts of Game

Theory we describe is the class 𝒫𝒫𝒜𝒟. We start with an important theorem of Com-

binatorics that surprisingly sheds light in “continuous” Mathematics properties and, by

consequence, the proof of existence of equilibrium in general games.

Definition. An (𝑀 − 1)-dimensional simplex, or (𝑀 − 1)-simplex, is the convex hull of

𝑀 affinely independent points in the ℝ𝑀 space.

Simplices receive this name for they are, in a sense, the “simplest” figures of (𝑀−1)

dimension. The 1-simplex is a line segment, 2-simplex is a triangle surface, the 3-simplex

is a tetrahedron, and so on.

Definition. A simplicial subdivision of an 𝑛-dimensional simplex 𝑇 is a partition of 𝑇

into smaller simplices (“cells”) such that any two cells share are either disjoint or share a

face in a certain dimension.

Definition. A legal coloring of an (𝑀 − 1)-simplex 𝑇 is an assignment of 𝑀 colors to

each vertex of a simplicial division, such that vertices of 𝑇 receive different colors and

points on each face of 𝑇 use only the colors of the vertices defining the respective face of

𝑇.

Notice the definition of legal coloring doesn’t place restrictions on the coloring of

internal vertices of the simplicial subdivision. As long as the vertices on the boundary of 𝑇

receive colors defined by the vertices of 𝑇 that define such boundary, the coloring is legal.

Theorem 4.1. (Sperner’s Lemma) Any legal coloring of a simplicial division of an

𝑛-simplex has an odd number of (𝑛 + 1)-colored cells.

Proof. Case 𝑛 = 1:

Figure 5: Legally colored simplicial division of a one-dimensional simplex.
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The 1-simplex is a line segment, such as in Figure 5. Since its endpoints have

different colors for the coloring to be legal, a path starting at one end and finishing at the

other end must flip colors an odd number of times.

Case 𝑛 = 2:

In this case, the 2-simplex is a triangle. Let us associate the colors yellow, red and

blue to its vertices as illustrated in Figure 6.

Figure 6: Legally colored simplicial division of a two-dimensional simplex.

Let 𝑌 be the set of red-and-yellow-only triangles of the simplicial subdivision and

𝑅 be the set of tri-chromatic triangles. Let 𝑡 denote the number of red-and-yellow edges

on the boundary of the simplex and 𝑏 the number of red-and-yellow edges in the interior

of the simplex. Each triangle in 𝑌 contributes with two red-and-yellow edges, and each

triangle in 𝑅 contributes with one. This way, we count the internal edges twice - one for

each triangle face:

2|𝑌| + |𝑅| = 𝑡 + 2𝑏

|𝑅| = 𝑡 + 2(𝑏 − |𝑌|)

The legal coloring allows for red-and-yellow boundary edges only on the line between

the vertices red and yellow of the 2-simplex, which reduces to the case already proved for

𝑛 = 1, which implies 𝑡 is odd and so is the cardinality of 𝑅.

General case holds by induction on the number of dimensions:

Suppose the (𝑛 − 1)-simplex to have an odd number of 𝑛-colored cells.

Let 𝐹 ⊂ 𝑆 be the (𝑛−1)-dimensional face of the 𝑛-simplex 𝑆, 𝐹 is a legally colored

(𝑛−1)-simplex with odd number of “rainbow” cells. Let 𝑌 be the set of 𝑛-colored cells of
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𝑆 with colors indexed by {1,… , 𝑛} – such that exactly one color in {1,… , 𝑛} is used twice

and all others once – again, 𝑡 and 𝑏 are the numbers of such faces on the boundary and the

interior of 𝑆 respectively, and 𝑅 the set of rainbow cells – those that use all 𝑛 + 1 colors.

The total number of faces with colors in {1,… , 𝑛}.

2|𝑌| + |𝑅| = 𝑡 + 2𝑏

|𝑅| = 𝑡 + 2(𝑏 − |𝑌|)

This reduces to the case for (𝑛 − 1)-simplex and, by hypothesis, 𝐹 has an odd number of

𝑛-colored cells, so 𝑡 is odd and so is |𝑅|. �

Sperner’s lemma poses a difficult problem for Computer Science on its own rights.

Let us introduce an artificial vertex in the triangulation of Figure 6 such that we introduce

another tri-chromatic triangle, depicted in Figure 7, on the underlying graph.

Figure 7: Traversal after introduction of an artificial tri-chromatic triangle.

We start off a path on the given graph, starting from the tri-chromatic triangle

introduced through our artificial vertex. The traversal rule is simple: we can only travel

through red-and-yellow “doors” with a yellow on the left-hand side.

It is straightforward from both the traversal rule and Sperner’s lemma we cannot

go backwards nor enter a cycle. In fact, the path should stop on another tri-chromatic

triangle, guaranteed to exist. If we repeat the procedure starting from another arbitrarily

chosen tri-chromatic triangle from inside the simplicial subdivision, again the path must

end on another tri-chromatic triangle that is not the artificially created nor the endpoint of

our first traversal.7

7. This is an equivalent way to make a construtive proof of Sperner’s lemma for two-dimensional sim-
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We construct a graph𝐺 = (𝑉, 𝐸) based on a Sperner’s triangulation such that every

cell is mapped to a vertex 𝑣 ∈ 𝑉, with any two vertices 𝑣 and 𝑢 connected by a directed

edge (𝑢, 𝑣) if and only if there’s a red-yellow door between them – with the edge direction

representing the direction of the traversal rule. We then have a graph with the property

that every vertex has no more than one incident edge and no more than one outgoing edge.

At this point, we suppose an exponentially large graph whose vertices are each

identified by a string of 𝑛 bits. The graph is defined by two circuits 𝑃 and 𝑁 and

∃(𝑢, 𝑣) ⟺ 𝑃(𝑢) = 𝑣 ∧ 𝑁(𝑣) = 𝑢.

That is: 𝑃 is the circuit that points to a potential sucessor, and 𝑁 is the circuit that points to

a potential predecessor. An edge can only exists between two vertices if the circuits agree.

The problem End-Of-Line can now be stated.

End of Line. Given an exponentially large graph with vertex set {0, 1}𝑛 with

circuits 𝑃 and 𝑁. If 0𝑛 is unbalanced, find another unbalanced node. Other-

wise output 0𝑛.

To be unbalanced means the vertex have an in-going edge, but not an out-going

edge, and vice versa. Figure 8 shows an exponentially large graph on the vertex set {0, 1}4.

By parity lemma in Combinatorics, we know the number of unbalanced nodes in

a graph is even, so if 0𝑛 is unbalanced then another unbalanced node must exist. Note

the input length is polynomially bounded in 𝑛 – the 𝑛-bit string for the 0-th vertex – and

checking all connections requires 𝒪(2𝑛) queries to the circuit.

Lemma 4.2. The number of vertices with odd degree in any graph is even.

Proof. Let 𝐺 = (𝑉, 𝐸), denote the degree of a vertex by the function 𝑑(⋅). Each edge

contributes with the degree of two vertices, so by summing the degree of all vertices:

∑
∀𝑣∈𝑉

𝑑(𝑣) = 2|𝐸|.

plices that can be stated as “all tri-chromatic triangles come in pairs, except for one – the one that pairs with
the artificially introduced triangle.” (Papadimitriou, 1994)
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Which implies the number of odd degrees in the summation is even. �

Definition. A problem 𝐿 ∈ 𝒫𝒫𝒜𝒟 – Polynomial Parity Argument for Directed

Graphs – if it is polynomial-time reducible to End-Of-Line.

Figure 8: Exponentially large graph for End-Of-Line with vertex set {0, 1}4.

There is no known algorithm to solve End-Of-Line in polynomial time in the size

of the input, nor a proof that it is either possible or impossible to do so in polynomial time.

4.2 To topological statements

Sperner’s lemma was proved in 1928 by Emmanuel Sperner and provided a simple way

to prove a cornerstone theorem in Topology first proved by Luitzen Brouwer in 1911. We

use Sperner’s lemma to prove it here.

Definition. The probability simplex in ℝ𝑚 is the set of points 𝑥 = (𝑥1,… , 𝑥𝑚) ∈ ℝ𝑚

such that 𝑥𝑖 ⩾ 0,∑𝑚
𝑖=1 𝑥𝑖 = 1.

The probability simplex is just the simplex as we defined earlier restricted to rep-

resent all families of probability distributions over an alphabet of size 𝑚. Because prob-

abilities are nonnegative, this hyperplane lies on the first orthant with vertices at one unit

distance from the origin. Figure 9 illustrates the probability for an alphabet of size 3.

We use the probability simplex here to provide a natural way to speak about Mixed Nash

equilibrium later.

Theorem 4.3. (Brouwer’s fixed point) Let ℬ be a convex and compact set – closed

and bounded. Any continuous function 𝑓 ∶ ℬ ↦ ℬ have at least one fixed point, i.e.,

𝑓(𝑥) = 𝑥.
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Figure 9: Two-dimensional probability simplex.

Proof. We prove the case here for the 2-simplex, the generality for any convex struture

follows from homeomorphism in topological spaces, and the 𝑛-dimensional follows anal-

ogously using the general case for Sperner’s Lemma in Theorem 4.1.

Let us assume 𝑓 ∶ 𝑆 ↦ 𝑆 is a continuous function where 𝑆 is the two-dimensional

probability simplex and it is compact. Suppose further that there’s no point 𝑥 = 𝑓(𝑥). We

define a coloring rule

𝑐(𝑥) =

⎧
⎪

⎨
⎪
⎩

1 for 𝑓(𝑥)1 < 𝑥1,

2 for 𝑓(𝑥)1 ⩾ 𝑥1 and 𝑓(𝑥)2 < 𝑥2,

3 for 𝑓(𝑥)1 ⩾ 𝑥1, 𝑓(𝑥)2 ⩾ 𝑥2 and 𝑓(𝑥)3 < 𝑥3

As we assume a fixed point does not exist, there cannot be any point 𝑥 such that 𝑥1 ⩾

𝑓(𝑥)1, 𝑥2 ⩾ 𝑓(𝑥)2, 𝑥3 ⩾ 𝑓(𝑥)3.

Let us use blue, red and yellow to represent the colors 1, 2 and 3 respectively, as

illustrated in Figure 10. Denote p1 = (1, 0, 0) , p2 = (0, 1, 0) , and p3 = (0, 0, 1).

One can check that regardless the form of 𝑓 there is no possible point on the bound-

ary between p1 and p2 able to be painted yellow, nor any point on the boundary between

p2 and p3 able to receive blue, and no point on the boundary between p1 and p3 to be

painted red, thus, the boundaries of the simplex satisfy the requirements for 𝑆 to be legally

colored.

Define a simplicial subdivision in 𝑆with infinitely many cells to be legally colored

according to our painting rule 𝑐(𝑥). As the number of cells grows, the length of the edges
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p1 p2

p3

Figure 10: Two-dimensional probability simplex with colored vertices.

between any two points approaches zero, and there is a subsequence of triangles whose

vertices all converge to some point 𝑧. By compactness of 𝑆, this point 𝑧 ∈ 𝑆. Sperner’s

lemma implies there is at least one tri-chromatic triangle in the legally colored simplex, so

blue vertices converge to 𝑧 ⟹ 𝑓(𝑧)1 ⩾ 𝑧1, red vertices converge to 𝑧 ⟹ 𝑓(𝑧)2 ⩾ 𝑧2
and yellow vertices converge to 𝑧 ⟹ 𝑓(𝑧)3 ⩾ 𝑧3. So 𝑧 = 𝑓(𝑧), contradicting our

assumption. �

Since Sperner’s lemma implies Brouwer’s fixed point, the problem of finding a

fixed point for a continuous function over a compact set, call it Brouwer, belongs to

𝒫𝒫𝒜𝒟.

4.3 General games and Nash equilibrium

Not all games have pureNash equilibrium, as per our examplewith Rock-Paper-Scissors.

Still, if we allow players to randomize over their strategy sets, an equilibrium is guaranteed

to exist.

Definition. (Mixed Nash Equilibrium) In a cost-minimization game, a Mixed Nash

Equilibrium (MNE) is an assignment of distributions 𝑥1,… , 𝑥𝑛 over strategy sets 𝑆1,… , 𝑆𝑛
such that

E[𝑢𝑖(s)]𝑠𝑖∼𝑥𝑖, s−𝑖∼x−𝑖
⩽ E[𝑢𝑖(s)]

𝑠𝑖∼𝑥′𝑖 , s−𝑖∼x−𝑖
∀ 𝑖

and every unilateral deviation to probability distribution 𝑥′𝑖.
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This definition generalizes the concept of equilibrium, and PNE is no different than

a Mixed Nash Equilibrium where the support8 of each player has cardinality equals to 1

each. The definition of MNE for profit-maximization game is analogous, changing the

direction of the inequality.

Nash’s theorem proves our Proposition (2.3.1) by constructing a continuous func-

tion over the cartesian products of players probability simplices, which is also a compact

set.

For ilustration purposes, consider the profit-maximization Penalty game (Daskalakis,

2014):

Left Right

Left (−1, 1) (1,−1)

Right (1,−1) (−1, 1)

The kicker being the row-player and the goalkeeper the column player.

Each player has two strategies, so the probability simplices for each of them is a

line segment [0, 1]. The cartesian product being the unit square 𝐶 = [0, 1]2. A continuous

function 𝑓 ∶ 𝐶 ↦ 𝐶 tracks payoff increments over unilateral deviations for a given mixed

strategy profile such that E[𝑢𝑖(𝑓(𝑥))] ⩾ E[𝑢𝑖(𝑥)] for some player 𝑖 with utility function

𝑢𝑖(⋅).

In Figure 11, the area shadowed in red are image points where the goalkeeper

finds an incentive to increment the probability of diving to the right. The blue area, image

points where the kicker finds an incentive to increment the probability of kicking to the

left. The yellow area, image points where either the kicker finds an incentive to increment

the probability of kicking to the right or the goalkeeper finds an incentive to increment

the probability of diving to the left. The point 𝑥∗ represents the assignment of half of the

probability for playing either left or right for both players and is the fixed point of 𝑓, so no

color is assigned, meaning no player can increment its payoff under unilateral deviation.

Theorem 4.4. (Nash’s Theorem) Every finite game has at least oneMixed Nash equilib-

rium.

Proof. Consider an 𝑛-player profit-maximization game, each player 𝑖 with strategy sets 𝑆𝑖

8. We call support the set of strategies associated with nonzero probabilities.
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Figure 11: Compact set of interest for the Penalty game.

and utility function 𝑢𝑖. The relevant compact set is 𝐶 = Δ1 × ⋯ × Δ𝑛, where Δ𝑖 is the

probability simplex of a player 𝑖.

We establish the functions 𝑓𝑖(⋅, ⋅) over points in the individual simplices Δ𝑖:

𝑓𝑖(𝑥𝑖, x−𝑖) = argmax
𝑥′𝑖∈Δ𝑖

[ E[𝑢𝑖(s)]
𝑠𝑖∼𝑥′𝑖 , s−𝑖∼x−𝑖

− ‖𝑥′𝑖 − 𝑥𝑖‖2]

The way to interpret this function (Roughgarden, 2016) is that the expectation

part indicates a movement towards the best response strategy, whilst the second acts as

a “penalty term” discouraging big changes in the vector of distributions. The function is

concave in 𝑥𝑖 and thus local maxima exists.

Let 𝑓 = (𝑓1,… , 𝑓𝑛), 𝑓 is continuous and map values from 𝐶 to 𝐶. Thus, by

Brouwer’s fixed point, it has at least one fixed point – a point where no player can in-

crease its payoff by picking a different probability distribution to draw its strategies from,

a Mixed Nash equilibrium. �

Since Brouwer implies the existence of anMNE, pertinence of Nash to𝒫𝒫𝒜𝒟 is

proven. So, even though Nash’s proof is derived from a topological statement, at its core, it

is a combinatorial search problem. In fact, Lemke-Howson algorithm (Nisan et al., 2007),

a known method of exponential running-time to find an MNE (out of the scope of this

text) does so by exploiting directed paths on a graph defined by the support of probability
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distributions – and it even starts with an “artificial equilibrium” in a much similar manner

to the artificial vertex for the path on the Sperner’s triangulation.

Since the formulation of𝒫𝒫𝒜𝒟 in (Papadimitriou, 1994) it was unknown whether

Nash was𝒫𝒫𝒜𝒟-complete. The positive result came years later on a celebrated proof by

(Daskalakis, Goldberg, and Papadimitriou, 2008), which we do not reproduce here. This

renders Nash a very difficult problem to solve and, by consequence, partially undermines

its proposition as model of social behavior prediction – notice that games might have

multiple equilibria, so even knowning a single equilibrium point, predictability of a system

with multiple agents is not guaranteed. And beyond that: if a computer is unable to find

an equilibrium, it is reasonable to think rational agents can’t do either.
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5 Final Considerations and Conclusions

5.1 Final Considerations

In this text, we presented the concept of Nash equilibrium, which is perhaps the most

accepted concept of a “solution” to games in Game Theory. As equilibrium does not come

from an algorithmic notion, but from a rather nonconstructive proof as per Nash’s original

works, Theoretical Computer Science took a natural lead into investigating fixed-point

computation, giving rise to the topics studied in this monograph.

The birth of Game Theory and the formulation of the most basic form of a game,

two-player zero-sum games, were proposed by John von Neumann and Oskar Morgen-

stern and published in 1928, with Theorem 2.7 being proved by means of fixed-point argu-

ments (historical wonders discussed in Kjeldsen, 2001). Fastforward to the 1950s, George

Dantzig presented his ideas on Linear Optimization Strong Duality and the Simplex Al-

gorithm, motivating von Neumann to prove Minimax again using arguments equivalent

to the ones used here in (2.7). Even back then, Dantzig, 1951, conjectured Minimax was

not only implied by strong duality, but in fact equivalent to it. This conjecture was proved

only recently by (Adler, 2013).

Papadimitriou, 2001, argues that, since the 1980s, Computer Science has moved to

connect more strongly with social sciences, largely motivated by the universality achieved

by the Internet as an information repository, a common place operated by many parties

with a multitude of economic interests “in varying relationships of collaboration and com-

petition with each other.” Thereby justifying the interaction between Computer Science

and Game Theory and the underlying theory discussed herein, from the tractability of

Linear Programming to the inadequacy of𝒩𝒫-completeness to capture equilibrium com-

plexity.

Although we do not approach such topics here, the theory presented in this mono-

graph, both from algorithmic perspective and from game-theoretical ones contribute and

improve upon interpretability of many applications in Sciences and Engineering, from

channel capacity in Information Theory (see Cover and Thomas, 2006, Exercise 9.21) to

machine learning models for online learning and boosting (Mohri, Rostamizadeh, and Tal-

walkar, 2018) and generative adversarial networks (Daskalakis et al., 2017; Daskalakis,
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2018).

5.2 Future Works

There are related concepts of equilibria, considered to be computationally tractable, that

we do not approach in this monograph. Namely, correlated equilibrium and coarse corre-

lated equilibrium. Those cases involve interesting and different dynamics than Algorithm

3 and can also be used to prove Minimax (Theorem 2.7) by exploiting their convergence

rules (Roughgarden, 2016) – as well as providing a more reasonable model on how agents

learn by playing rather than finding exact equilibrium by solving linear programs. A nat-

ural path to expand upon this text is to work on the introduction of those concepts and

algorithms.

Even more interesting, though, would be a deeper discussion about applications

of the work discussed herein. Although motivated by applications, our approach focused

mostly on complexity of computation, and enlarging the discussion with the use of the the-

ory described here into domains ofMachine Learning, MechanismDesign and Distributed

Computation would signify a sizable improvement of the text and contribution towards the

presentation of more digestible resources at the undergraduate and initial graduate levels.
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A Lagrange Multipliers

Lagrange Multipliers are a technique used in Optimization to find minima and maxima of

a function subject to constraints. Consider the problem

min𝑥 𝑓(𝑥)

s.t. 𝑔(𝑥) = 0
(A.1)

where the argument 𝑥 is a 𝐷-dimensional vector. The constraint 𝑔(𝑥) = 0 specifies a

region of feasible choices of 𝑥 and we seek to minimize 𝑓 as long as the argument 𝑥 lies in

the constrained region. By projecting 𝑔(𝑥) = 0 onto the surface levels of 𝑓(𝑥) one can see

that the stationary points of 𝑓(𝑥) lie on surface levels tangent to the vicinity of 𝑔(𝑥) = 0 –

otherwise, for a given 𝑥, a new feasible point with better cost could be found by walking in

the direction on the gradient at 𝑥 – thus gradient vectors∇𝑓(𝑥) and∇𝑔(𝑥) are antiparallel

and must be equal up to a scaling factor

∇𝑓(𝑥) = −𝜆∇𝑔(𝑥), (A.2)

where 𝜆 ≠ 0 is called Lagrange Multiplier. Let

𝐿(𝑥, 𝜆) ≜ 𝑓(𝑥) + 𝜆𝑔(𝑥), (A.3)

one can find optimal solutions to 𝑓(𝑥) subject to 𝑔(𝑥) = 0 by computing the values of

𝑥 such that ∇𝑥𝐿 = 0. Notice, also, derivating 𝐿 with respect to 𝜆 returns the original

constraint. Since 𝑥 is a 𝐷-dimensional vector, the derivatives should return a system of

𝐷+1 equations determining𝑥∗ and 𝜆. Typically, for discussions in the realm ofDifferential

Calculus, the value of the Lagrange multiplier is not of interest, being the discussion on

dual problems in Chapter 2 an otherwise application.

The Lagrange multipliers can be easily generalized for inequality constraints in the

same vein discussed in Chapter 2, where sign constraints in the Lagrange multiplier are

now present. The proof of Theorem 2.6 develops necessary conditions for optimality of a
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constrained optimization problem. The condition

(𝑐 − (𝑝∗)′𝐴)𝑥∗ = 0, (A.4)

in particular, is known as complementary slackness and comes out as a corollary of strong

duality in Theorem 2.5. In plain English, it states that either a decision variable for the

primal is zero or its corresponding constraint in the dual is active – i.e., satisfied with

equality. Conversely, for every inactive constraint in the primal, the associated variable

in the dual assumes value zero. Together with primal and dual feasibility of 𝑥∗ and 𝑝∗,

these conditions are known as Karush-Kuhn-Tucker conditions, for they were first stated

by William Karush in his master’s thesis (Karush, 1939), and later rediscovered indepen-

dently by Harold W. Kuhn and Albert W. Tucker (Kuhn, 1950), (see also Kjeldsen, 2000,

for historical wonders).
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B Linear Algebra

This section is only meant to review notation and basic operations of LinearAlgebra, as no

more than high-school Algebra is required to understand the concepts in this monograph.

Definition. A vector 𝑥 ∈ ℝ𝑛 is the specification of a point (𝑥1,… , 𝑥𝑛), were each 𝑥𝑖
specifies the distance from the origin in 𝑖-th coordinate.

We denote the zero vector, also known as origin, by 0. We abuse notation to denote

1 the vector were all entries are 1 unit from the origin. By vector we always mean a column

vector. We use apostrophes to denote the transpose. For vectors are defined the operations

of addition:

𝑥 + 𝑦 = (𝑥1 + 𝑦1,… , 𝑥𝑛 + 𝑦𝑛),

where 𝑥, 𝑦 ∈ ℝ𝑛; multiplication by scalars:

𝜆𝑥 = (𝜆𝑥1,… , 𝜆𝑥𝑛);

as well as the inner-product, also known as dot-product:

𝑥′𝑦 = 𝑦′𝑥 = ∑
𝑖
𝑥𝑖𝑦𝑖,

where 𝑥, 𝑦 ∈ ℝ𝑛, and it results in a scalar quantity.

Definition. The magnitude of a vector 𝑥 ∈ ℝ𝑛 is denoted by ‖𝑥‖ = √𝑥′𝑥 = √∑𝑖 𝑥
2
𝑖 .

Definition. A matrix 𝐴 ∈ ℝ𝑚×𝑛 is an array of 𝑛 vectors of dimension 𝑚.

The operation of multiplication between a matrix𝐴 ∈ ℝ𝑚×𝑛 and a vector 𝑥 ∈ ℝ𝑚

is defined as the inner product between the column vectors of 𝐴 and 𝑥:

𝑥′𝐴 = [𝑥′𝐴1 𝑥′𝐴2 ⋯ 𝑥′𝐴𝑛] ,

which results in a row vector of dimension 𝑛.
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C Asymptotic Notation

Operation counts for algorithms is estimated in terms of rate of growth of the number of

arithmetic operations as function of the problem parameters. We use asymptotic notation

to refer to orders of magnitude of the running time of an algorithm.

Definition. Let 𝑓 and 𝑔 be functions that map positive numbers to positive numbers.

i. We write 𝑓(𝑛) = 𝒪(𝑔(𝑛)) if there exist positive number 𝑛0 and positive constant 𝑐

such that 𝑓(𝑛) ⩽ 𝑐𝑔(𝑛) for all 𝑛 ⩾ 𝑛0.

ii. We write 𝑓(𝑛) = Ω(𝑔(𝑛)) if there exist positive number 𝑛0 and positive constant 𝑐

such that 𝑓(𝑛) ⩾ 𝑐𝑔(𝑛) for all 𝑛 ⩾ 𝑛0.

iii. We write 𝑓(𝑛) = Θ(𝑔(𝑛)) if there exist positive number 𝑛0 and positive constants

𝑐1 and 𝑐2 such that 𝑐1𝑔(𝑛) ⩽ 𝑓(𝑛) ⩽ 𝑐2𝑔(𝑛) for all 𝑛 ⩾ 𝑛0.
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D Definitions from Topology and Real Analysis

For the purposes of this monograph, a compact set can be understood as a set that is both

closed and bounded.

Definition. A subset 𝑆 ⊂ ℝ𝑛 is bounded if, and only if, there exist finite 𝑟 and ball

𝐵 = (0, 𝑟) such that 𝑆 ⊆ 𝐵.

Definition. Let 𝑥 be a point in ℝ𝑛. The set of all points in an arbitrary nonzero radius

from 𝑥 is a neighborhood of 𝑥.

Definition. Let 𝑆 be a subset of ℝ𝑛. A point 𝑥 ∈ ℝ𝑛 is a limit point of 𝑆 if every

neighborhood of 𝑥 contains at least one point of 𝑆 different from 𝑥.

The set 𝑆 is said to be closed if it contains all of its limit points.

Intuitively, a set 𝑆 is closed if it contains all of its boundaries. Linear Programming,

defined in Chapter 2, can only defined for compact polyhedra – otherwise, for any point

𝑥 inside the polyhedron, we could add an infinitesimally small quantity |𝜖| > 0 to some

of its components in order to optimize for the objective function without violating the

constraints, such that the objective function nevers attains its infimum or supremum. A

more detailed discussion requires the application ofWeierstrass’ ExtremeValue Theorem,

which states that for every continuous real-valued function over a compact set there exist

at least a minimum and a maximum for the said function, but we leave it out of the scope

of this monograph.

Definition. (Homeomorphism) Two sets 𝑆 and 𝑅 are said to be homeomorphic to each

other if, and only if, there is a continuous and invertible bijective function 𝑔 ∶ 𝑆 ↦ 𝑅,

with 𝑔−1 being continuous also.

Homeomorphism is an important concept in Topology, as it establishes a notion

of equivalence between geometrical spaces, or more generally topological spaces. For

instance, some set with a “hole” inside can be proven to be homeomorphic to a torus, so

any property that is true for a torus holds for the initial figure.9 Likewise, homeomorphism

plays a role in the generalization of Theorem 4.3 to convex structures, for the reason that

9. There’s a well-known joke among mathematicians that a topologist can’t discern a donut from a coffee
mug.
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any convex 𝐷-dimensional structure is homeomorphic to a 𝐷-simplex, thus proving the

existence of a fixed point for any continuous function 𝑓 ∶ 𝑆 ↦ 𝑆 where 𝑆 is convex.

We refer to (Tao, 2006; Rudin, 1976) for textbooks on Analysis, and (Theodore

W. Gamelin, 1999) for a treatment in Topology.
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E Graph Theory

Although graphs are not the main object of study in this monograph, Graph Theory un-

derlies many concepts approached herein to the point we use graph-theoretic jargons as

a second nature throughout. Therefore, some definitions are presented in this section in

order clarify any jargon used in the text.

Definition. A graph 𝐺 = (𝑉, 𝐸) is a tuple, where 𝑉 is the set of vertices and 𝐸 is the set

of edges connecting pair of vertices 𝑢, 𝑣 ∈ 𝑉.

If the edges have directions associated, each edge 𝑒 is a tuple (𝑢, 𝑣) such that the

direction is from 𝑢 to 𝑣.

Definition. A walk is any arbitrary sequence of vertices (𝑣1, 𝑣2,… , 𝑣𝑛) such that there

exists edges between each pair of vertices 𝑣𝑖, 𝑣𝑖+1.

Definition. A path is a walk such that no vertice is present in the sequence more than

once.

Definition. A cycle is a sequence of vertices (𝑣1, 𝑣2,… , 𝑣𝑛−1, 𝑣𝑛) such that the subse-

quence (𝑣1,… , 𝑣𝑛−1) is a path and 𝑣1 = 𝑣𝑛.

Definition. The degree of a vertice 𝑣 ∈ 𝑉 is the number of edges incident to 𝑣.
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