

FEDERAL UNIVERSITY OF THE RIO DE JANEIRO STATE

CENTER OF EXACT SCIENCES AND TECHNOLOGY

SCHOOL OF APPLIED INFORMATICS

UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO

CENTRO DE CIÊNCIAS EXATAS E TECNOLOGIA

 ESCOLA DE INFORMÁTICA APLICADA

Performance of the Julia Programming Language in Different Search Methods

Alice da Fonseca Monteiro

Supervisor

Pedro Nuno de Souza Moura

RIO DE JANEIRO, RJ – BRAZIL

JULY 2018

ii

iii

Performance of the Julia Programming Language in Different Search Methods

Alice da Fonseca Monteiro

Undergraduate thesis presented to the Applied Informatics

School of the Federal University of the Rio de Janeiro

State to obtain the title of Bachelor in Information

Systems.

Approved by:

__

 Pedro Nuno de Souza Moura (Unirio)

__

 Leonardo Luiz Alencastro Rocha (Unirio)

RIO DE JANEIRO, RJ – BRAZIL.

JULY 2018

iv

Acknowledgements

I would like to thank those who helped me make this possible; who showed me a path;

who gave me the initial push I needed; and who kept supporting me through the whole

path.

v

RESUMO

Busca é uma das principais técnicas de solução de problemas em inteligência artificial.

Este estudo aborda o problema de solução de labirintos utilizando busca e testa o

desempenho de algoritmos de busca implementados em Julia, linguagem de alto nível

desenvolvida para computação numérica. Foram feitos experimentos de tempo

comparando o desempenho de Julia e Python. Os resultados sugerem que Julia tem

melhor desempenho em instâncias maiores, o que corrobora a literatura sobre o tema.

Palavras-chave: Julia, busca, labirinto.

vi

ABSTRACT

Search is one of the main problem-solving techniques in artificial intelligence. The

present study addresses the maze solving problem using search and tests the

performance of search algorithms implemented in Julia. Julia is a high-level language

developed for numerical computing. Similar search algorithms were implemented in

Python to show the difference between the two languages. The literature shows that

Julia performs better with larger instances, which has been suggested by the results.

Keywords: Julia, search, maze.

vii

Contents

1 Introduction ... 1

1.1 Motivation .. 1

1.2 Problem Statement ... 1

1.3 Objectives .. 2

1.4 Text Structure .. 2

2 Main Concepts... 3

2.1 Julia .. 3

2.2 Search ... 4

2.3 Maze Solving ... 7

3 Methodology ... 8

3.1 Mazes ... 8

3.2 Search Methods .. 9

3.3 Time Measurements ... 11

4 Results ... 13

4.1 Time Measurement Results.. 13

4.2 Time Measurement Functions.. 18

5 Conclusion ... 20

5.1 Final Remarks .. 20

5.2 Study Limitations ... 21

5.3 Future Research ... 21

Appendices ... 22

A. Code for breadth-first search in Julia ... 22

B. Code for depth-first search in Julia .. 23

C. Code for heuristic and A* search in Julia .. 24

viii

List of Tables

Table 1: Results for the 21 x 21 maze. ... 13

Table 2: Mean results for the 21 x 21 maze. .. 14

Table 3: Results for the 31 x 31 maze. ... 15

Table 4: Mean results for the 31 x 31 maze. .. 15

Table 5: Results for the 41 x 41 maze. ... 16

Table 6: Mean results for the 41 x 41 maze. .. 16

Table 7: Results for the 201 x 201 maze. ... 17

Table 8: Mean results for the 201 x 201 maze. .. 18

ix

List of Figures

Figure 1. Benchmark times relative to C (smaller is better, C performance = 1.0).

Source: julialang.org. .. 3

Figure 2. Tree-search algorithm. Source: Russel/Norvig. .. 5

Figure 3. Graph-search algorithm. Source: Russel/Norvig. ... 6

Figure 4: Mazes. A: Orthogonal maze (rectangular cells). B: Sigma maze (hexagonal

cells). C: Delta maze (triangular cells). D: Theta maze (circular maze). Source:

mazegenerator.net. .. 7

Figure 5: 21 x 21 maze. Wall are represented as “X” and paths as “.”. The initial state is

represented as “I” and the goal state as “F”. .. 8

Figure 6: Breadth-first search algorithm pseudocode... 9

Figure 7: Depth-first search algorithm pseudocode. .. 10

Figure 8: A* search and heuristic algorithm pseudocode. ... 11

Figure 9: Mean results of time measurements for the 21 x 21 maze. 14

Figure 10: Mean results of time measurements for the 31 x 31 maze. 15

Figure 11: Mean results of time measurements for the 41 x 41 maze. 17

Figure 12: Mean results of time measurements for the 201 x 201 maze. 18

Figure 13: Sample result from the time measurement function in Julia for the 201 x 201

maze. ... 18

Figure 14: Sample result from the time measurement function in Python for the 201 x

201 maze. .. 19

1

1 Introduction

1.1 Motivation

Performance is a crucial factor for programming languages used for scientific

computing, as large amounts of data need to be analyzed. Conversely, there has always

been the need to develop languages with a shallow learning curve. Fortran, a very

popular programming language among researchers, is the short for Formula Translating

System, and was developed as an effort to make it possible for scientists to write

programs themselves. Julia claims to bring the best of both worlds: To be a high-level,

high-performance dynamic programming language for numerical computing that

combines the performance of C with the productivity of high-level languages.

Search is one of the main techniques for problem solving in artificial intelligence, as

many artificial intelligence problems can be modeled as state spaces that need to be

explored to find a solution. Mazes are a simple abstraction where search techniques can

be successfully applied. Therefore, in the present study, mazes are used to evaluate the

performance of Julia using different search methods to solve them.

1.2 Problem Statement

Scientific programming requires high performance, yet domain experts tend to use

slower dynamic languages, such as Python, due to the steep learning curve of high-

performing languages such as C. Julia is a high-level dynamic programming language,

with good readability and shallow learning curve. One of its main advertised features is

high performance, allowing it to approach and often match the performance of C, which

is a reference in terms of speed. This would eliminate the performance for ease of use

trade-off that usually occurs when using high-level dynamic languages.

2

1.3 Objectives

The present study aims to evaluate the performance of Julia and find out whether it

would be a suitable language for maze solving. Different search methods are

implemented along with time measurements. For comparison purposes, the same

methods are implemented in Python.

1.4 Text Structure

The present study is structured as the following chapters beyond the introduction:

Chapter 2 describes the main concepts related to the study: the Julia programming

language, the maze problem, and search algorithms used for maze solving. Chapter 3

describes the methodology used to generate the results, which are presented and

discussed on Chapter 4. Finally, Chapter 5 brings final considerations, limitations of the

study and suggestions for future research on the subject.

3

2 Main Concepts

This chapter describes the main concepts related to the present study. The first section

provides an overview of Julia. The second section addresses search and the search

methods implemented in the study. The third section describes the maze solving

problem.

2.1 Julia

Julia is a high-level dynamic programming language for numerical computing [1]. It has

been in development since 2009 and was first released in 2012 as an open source project

available under the MIT License for open source software. Benchmarks show that it

approaches and often matches the performance of C [2]. Figure 1 shows benchmark

times for Julia.

Figure 1. Benchmark times relative to C (smaller is better, C performance = 1.0). Source:

julialang.org.

4

Julia’s design combines a number of technologies to deliver a high-performance

language, while maintaining ease of use and increased productivity due to the high

abstraction level provided as a dynamic high-level language.

Julia works with an out-of-the-box LLVM-based just-in-time (JIT) compiler for just-in-

time generation of machine code. Declaring the type of variables in the code is optional,

as it has a dynamic type system. Types are inferred based on data contained in the

variables using an algorithm based on forward dataflow analysis [3].

Julia’s primary means of abstraction is dynamic multiple dispatch [4]. The majority of

Julia functions are generic functions, which select native code implementations across

multiple combinations of argument types.

Numerical computing requires performance-critical numerical libraries, which depend

on the details of the internal implementation of the high-level language. A main

indicator of the validity of Julia’s design is that its standard library, which encompasses

most of the core functionality of standard technical computing environments, is

implemented in Julia itself.

Julia is still a fairly young language, especially when the current version number is

considered (0.6.3), but its foundation is stable, with no backwards-incompatible changes

since the first release [2].

2.2 Search

Search is one of the main problem-solving approaches in artificial intelligence.

Search is the process of an agent constructing sequences of actions that achieve goals.

Before solving a problem by using search, a goal must be identified and a well-defined

problem must be formulated.

A well-defined problem has an initial state, a description of all the possible actions

available to the agent, a transition model, which defines what each action does, the goal

test, which determines whether a given state is a goal state, and a path cost function that

assigns a numeric cost to each path. In addition, some level of abstraction must be

applied to remove as much detail as possible while preserving the validity of abstract

actions and ensuring they are easy to carry out in the real world.

5

A solution to a problem is an action sequence leading from the initial state to a goal

state, i.e., a path from the initial state to a goal state, whose quality is measured by the

path cost function. An optimal solution has the lowest path cost among all solutions.

Search algorithms work by considering different possible solutions, i.e., action

sequences. First, the initial state is tested to verify whether it is a goal state. Then, the

current state is expanded by generating a new set of states depending on the available

actions. The states then can be expanded are called the frontier of the problem. The next

step is to choose the next state and continue the search process. All search algorithms

share this basic structure, named tree-search. They vary according to how they choose

which state to expand next, i.e., the search strategy. Figure 2 shows a tree-search

algorithm.

Figure 2. Tree-search algorithm. Source: Russel/Norvig.

Some problems can be defined to eliminate redundant paths by limiting the available

actions. When redundant paths are unavoidable, a data structure called the explored set

is added to keep track of visited nodes. This new algorithm is called the graph-search

algorithm. Therefore, tree-search algorithms consider all possible paths to find a

solution, while graph-search algorithms avoid considering redundant paths. Figure 3

shows a graph-search algorithm.

function TREE-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the

corresponding solution

expand the chosen node, adding the resulting nodes to the

frontier

6

Figure 3. Graph-search algorithm. Source: Russel/Norvig.

There are informed and uninformed search strategies. In uninformed search strategies,

also called blind search, methods have access only to the problem definition, with no

additional information about states. All they can do is distinguish a goal state from a

non-goal state, and they differ based on the order in which nodes are expanded.

Uninformed search examples are breadth-first search and depth-first search.

Breadth-first search is a simple strategy in which the root node is visited and expanded,

then all of its successors are expanded next, then their successors, and so on. This is

achieved by using a FIFO queue for the set of all available nodes for expansion (i.e., the

frontier). This way, new nodes go to the back of the queue and old nodes get expanded

first.

Depth-first search always expands the deepest node in the frontier, proceeding to the

deepest level of the search tree, where nodes have no successors. A LIFO queue is used

so the most recently generated node is chosen for expansion.

In addition to the problem definition, informed search strategies use problem-specific

knowledge to select nodes that are going to be expanded. The general approach is called

best-first search, which uses an evaluation function to provide a cost estimate, and the

node with the lowest evaluation is expanded first. Most best-first algorithms use a

heuristic function, which provides the estimated cost of the cheapest path from the state

to a goal state.

function GRAPH-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the

corresponding solution

add the node to the explored set

expand the chosen node, adding the resulting nodes to

the frontier

only if not in the frontier or explored set

7

One thing to note is that the heuristic function must be admissible and consistent. An

admissible heuristic never overestimates the cost to reach the goal. A heuristic is

consistent if the estimated cost of getting to the goal from a node n is no greater than the

step cost of getting from n to each of its successors n’ plus the estimated cost of getting

from n’ to the goal.

A* (A-star) search is an informed search method that uses a heuristic function to

estimate the cost to reach the goal. It combines the cost to reach the node and the cost to

get from the node to the goal to estimate the cost of the cheapest solution.

2.3 Maze Solving

Mazes can be modeled as state spaces that can be solved using search. Paths are divided

into units with the same size that represent the states that can be accessed. Some states

cannot be accessed, i.e., walls. Search strategies find the path from the initial state to a

goal state by performing the available actions according to the maze type and the

algorithm chosen. Figure 4 shows a few examples of different types of mazes.

Figure 4: Mazes. A: Orthogonal maze (rectangular cells). B: Sigma maze (hexagonal cells). C:

Delta maze (triangular cells). D: Theta maze (circular maze). Source: mazegenerator.net.

8

3 Methodology

This chapter describes the methodology used to develop the study. The first section

presents the mazes used to run the search algorithms. The second section describes how

the search methods were implemented. The third section describes how time

measurements were made.

3.1 Mazes

The mazes explored were contained in a set of four text files with different sized mazes

(21 x 21, 31 x 31, 41 x 41, and 201 x 201 cells). Mazes were orthogonal and had only

one possible solution. Figure 5 shows one of the mazes used.

Figure 5: 21 x 21 maze. Wall are represented as “X” and paths as “.”. The initial state is

represented as “I” and the goal state as “F”.

9

Each maze was stored in a two-dimensional array with 1 representing walls and 0

representing paths, and the start and the goal nodes were stored as tuples of coordinates.

A dictionary of adjacencies was built from the array, having nodes (tuples of

coordinates) as keys and arrays with neighboring nodes along with their direction (char

N for North, S for South, E for East, and W for West) as values. The dictionary of

adjacencies and the start and goal nodes were passed as arguments to all functions.

3.2 Search Methods

Standard data structures were used to implement the search methods, and iterative

implementations of breadth-first search, depth-first search, and A* search were used.

Graph-search, which avoids repeated states and redundant paths, was used in all

implementations. Figures 4 and 5 show the pseudocode for the breadth-first search and

depth-first search algorithms.

Figure 6: Breadth-first search algorithm pseudocode.

function BREADTH-FIRST-SEARCH(dictionary, start, goal) returns path and

visited nodes, or failure

SET queue to empty list

SET visited to empty set

SET path to empty string

PUSH (start, path) to queue

WHILE queue is not empty

REMOVE firstItem from queue

SET (current, path) to firstIitem

IF current is equal to goal

ADD current to visited

RETURN path, visited

IF current is not in visited

ADD current to visited

FOR (direction, neighbor) in dictionary key current

PUSH (neighbor, path*direction) to queue

RETURN failure

10

Figure 7: Depth-first search algorithm pseudocode.

For A* search, the Manhattan distance was chosen as heuristic function. For points p1

at (x1, x2) and p2 at (y1,y2), the Manhattan distance is calculated as below:

|x1 - x2| + |y1 - y2|

It is an admissible heuristic for the orthogonal mazes used in the present study, as it

never overestimates the cost to reach the goal, which cannot be less than the distance

between the goal and the start measured along axes at right angles.

The absolute values were obtained using the abs function. Figure 6 shows the

pseudocode for the A* algorithm.

function DEPTH-FIRST-SEARCH(dictionary, start, goal) returns path and visited

nodes, or failure

SET stack to empty list

SET visited to empty set

SET path to empty string

PUSH (start, path) to stack

WHILE stack is not empty

REMOVE lastItem from stack

SET (current, path) to lastIitem

IF current is equal to goal

ADD current to visited

RETURN path, visited

IF current is not in visited

ADD current to visited

FOR (direction, neighbor) in dictionary key current

PUSH (neighbor, path*direction) to stack

RETURN failure

11

Figure 8: A* search and heuristic algorithm pseudocode.

3.3 Time Measurements

All time measurements were made using an Intel Core i3-4340 CPU @ 3.60 GHz with 8

GB RAM running Windows 10.

function A-STAR-SEARCH (dictionary, start, goal) returns path and visited nodes, or

failure

SET priorityQueue to empty list

SET visited to empty set

SET path to empty string

SET order to 0 + heuristic(start, goal)

SET cost to 0

SET current to start

PUSH (order, cost, path, current) to priorityQueue

WHILE priorityQueue is not empty

REMOVE lastItem from priorityQueue

SET (order, cost, path, current) to lastItem

IF current is equal to goal

ADD current to visited

RETURN path, visited

IF current is not in visited

ADD current to visited

FOR (direction, neighbor) in dictionary key current

PUSH (cost + heuristic(neighbor, goal), cost + 1,

path*direction, neighbor) to priorityQueue

RETURN failure

function heuristic (cell, goal) returns minimum absolute distance between cell and

goal

 RETURN minimum absolute distance(cell[1] - goal[1]) + minimum absolute

distance(cell[2] - goal[2])

12

Julia 0.6.2.2 was used and scripts were executed from the Julia REPL. Times were

measured using the @time macro, which is recommended by Julia developers for time

measurement purposes.

Python was used to provide a time reference. Python 3.6.5 was used and scripts were

executed from the command line. Times were measured using the timeit() function.

The next chapter presents the results obtained from the time measurements.

13

4 Results

This chapter presents the results obtained from the time measurements of each search

method implemented.

4.1 Time Measurement Results

Tables 1, 3, 5, and 7 show a sample of the time measurement results obtained for

breadth-first search (BFS), depth-first search (DFS), and A* search (A*) for the 21 x 21,

31 x 31, 41 x 41, and 201 x 201 mazes. Tables 2, 4, 6, and 8 show the mean results of

the time measurements performed on each maze and Figures 8–11 illustrate these

results. Python results are included as a reference, and all results are expressed in

seconds.

The 21 x 21 maze was fairly small and, as expected, the search methods were able to

solve it very fast. A* implemented in Julia was the slowest method, taking up to 0.001

seconds (Table 1), but still very fast.

Table 1: Results for the 21 x 21 maze.

21 x 21

Julia Python

BFS DFS A* BFS DFS A*

0.0002 0.0001 0.0009 0.0002 0.0002 0.0005

0.0002 0.0001 0.0010 0.0002 0.0002 0.0005

0.0003 0.0001 0.0009 0.0002 0.0002 0.0006

0.0002 0.0001 0.0009 0.0003 0.0002 0.0005

0.0003 0.0001 0.0010 0.0003 0.0002 0.0005

0.0004 0.0009 0.0010 0.0003 0.0002 0.0005

0.0001 0.0003 0.0010 0.0004 0.0003 0.0008

0.0002 0.0002 0.0010 0.0004 0.0002 0.0005

0.0002 0.0001 0.0010 0.0004 0.0003 0.0008

0.0003 0.0001 0.0009 0.0002 0.0003 0.0005

14

Table 2 and Figure 9 show that the mean time for each search method in both languages

was quite similar.

Table 2: Mean results for the 21 x 21 maze.

21 x 21 - Means

Python Julia

BFS DFS A* BFS DFS A*

0.0003 0.0002 0.0006 0.0002 0.0002 0.0010

Figure 9: Mean results of time measurements for the 21 x 21 maze.

The 31 x 31 maze was slightly bigger, but time measurements were similar to those

obtained in the 21 x 21 maze. Table 3 shows that A* was considerably slower than BFS

and DFS, taking up to 0.0025 seconds in Julia. However, some of the results for A* in

Julia were achieved in half of this time, in a minimum of 0.0012 seconds.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

BFS DFS A*

21 x 21

Julia Python

15

Table 3: Results for the 31 x 31 maze.

31 x 31

Julia Python

BFS DFS A* BFS DFS A*

0.0002 0.0001 0.0011 0.0006 0.0002 0.0006

0.0003 0.0001 0.0024 0.0006 0.0002 0.0008

0.0002 0.0001 0.0012 0.0004 0.0001 0.0006

0.0003 0.0002 0.0012 0.0004 0.0001 0.0010

0.0002 0.0001 0.0023 0.0005 0.0002 0.0010

0.0003 0.0001 0.0013 0.0004 0.0002 0.0007

0.0002 0.0002 0.0024 0.0003 0.0001 0.0006

0.0002 0.0001 0.0012 0.0006 0.0002 0.0010

0.0004 0.0001 0.0013 0.0005 0.0002 0.0010

0.0002 0.0002 0.0025 0.0003 0.0001 0.0006

These intermittent results greatly affected the mean time for A* in Julia, as observed in

Table 4 and in Figure 10.

Table 4: Mean results for the 31 x 31 maze.

31 x 31 - Means

Python Julia

BFS DFS A* BFS DFS A*

0.0005 0.0002 0.0008 0.0003 0.0001 0.0017

Figure 10: Mean results of time measurements for the 31 x 31 maze.

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

BFS DFS A*

31 x 31

Julia Python

16

DFS implemented in Julia proved to be the most efficient method-language combination

in the 41 x 41 maze, running in 0.0003–0.0006 seconds, almost always less than the

minimum it took for other methods to run (Table 5).

Table 5: Results for the 41 x 41 maze.

41 x 41

Julia Python

BFS DFS A* BFS DFS A*

0.0006 0.0004 0.0128 0.0008 0.0007 0.0023

0.0005 0.0002 0.0037 0.0014 0.0013 0.0032

0.0006 0.0003 0.0035 0.0014 0.0013 0.0034

0.0007 0.0003 0.0088 0.0008 0.0008 0.0028

0.0007 0.0003 0.0036 0.0012 0.0007 0.0018

0.0007 0.0002 0.0034 0.0009 0.0008 0.0019

0.0009 0.0003 0.0036 0.0009 0.0008 0.0025

0.0011 0.0003 0.0034 0.0013 0.0012 0.0021

0.0007 0.0006 0.0034 0.0014 0.0013 0.0019

0.0291 0.0005 0.0035 0.0008 0.0008 0.0019

In Julia, an extreme result of 0.0291 seconds was obtained for BFS. Similarly, an

extreme result of 0.0128 seconds was obtained for A*. Again, these results affected the

mean time for BFS and A* in Julia (Table 6 and Figure 11), which otherwise would

have been similar to those obtained with Python.

Table 6: Mean results for the 41 x 41 maze.

41 x 41 - Means

Python Julia

BFS DFS A* BFS DFS A*

0.0011 0.0010 0.0024 0.0036 0.0003 0.0049

17

Figure 11: Mean results of time measurements for the 41 x 41 maze.

In the 201 x 201 maze, the results for BFS and DFS implemented in Julia exhibited

inconsistencies, with the maximum time sometimes taking almost three times longer

than the minimum time (Table 7).

Table 7: Results for the 201 x 201 maze.

201 x 201

Julia Python

BFS DFS A* BFS DFS A*

0.0678 0.0723 0.1572 0.0442 0.0398 0.0983

0.0661 0.0675 0.1693 0.0490 0.0459 0.0836

0.1843 0.0679 0.1623 0.0458 0.0461 0.0809

0.0687 0.0620 0.1620 0.0462 0.0485 0.0845

0.0676 0.0690 0.1781 0.0447 0.0473 0.0861

0.0692 0.0636 0.1712 0.0534 0.0456 0.0897

0.0638 0.1894 0.1637 0.0464 0.0446 0.0867

0.0685 0.1706 0.1745 0.0438 0.0520 0.0825

0.0662 0.0819 0.1900 0.0430 0.0484 0.0839

0.0685 0.1706 0.1745 0.0466 0.0475 0.0800

A* search implemented in Julia was markedly slower than that implemented in Python,

reaching almost double of the maximum time spent by A* implemented in Python

(Table 8 and Figure 12).

0

0.001

0.002

0.003

0.004

0.005

0.006

BFS DFS A*

41 x 41

Julia Python

18

Table 8: Mean results for the 201 x 201 maze.

201 x 201 - Means

Python Julia

BFS DFS A* BFS DFS A*

0.0463 0.0466 0.0856 0.0791 0.1015 0.1703

Figure 12: Mean results of time measurements for the 201 x 201 maze.

4.2 Time Measurement Functions

The @time macro in Julia measures not only the time it takes for a function to run, but

also returns the memory allocated and the garbage collection time. Figure 13 shows a

sample output from the @time macro, taken from the 201 x 201 maze.

Figure 13: Sample result from the time measurement function in Julia for the 201 x 201 maze.

We can observe that garbage collection accounts for a large share of the time it takes for

functions to run in Julia.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

BFS DFS A*

201 x 201

Julia Python

19

In Python, the timeit() function was used, which by default, automatically disables

garbage collection at the time of the measurements. Figure 14 shows a sample output

from the timeit() function, taken from the 201 x 201 maze.

Figure 14: Sample result from the time measurement function in Python for the 201 x 201 maze.

20

5 Conclusion

This chapter presents the conclusions of the present study. The first section contains the

final remarks regarding the results obtained. The second section states the limitations of

the study and the third section suggests topics for future research on the subject.

5.1 Final Remarks

The results of the present study show that both Julia and Python are efficient languages

for maze solving. Julia did not show any significant advantages over Python. Most of

the times, Python even outperformed Julia. However, a few considerations should be

made about this.

First, the code used for the search algorithms was a simple implementation, with no

type declarations. This makes it difficult to follow one of the main recommendations

made by Julia’s developers, which is to maintain type-stability. Although types can be

inferred based on the data contained, this makes it more difficult for the compiler to

optimize code and may impact performance.

In addition, memory preallocation, which is another recommendation to improve

performance, was not used. This may have significantly impacted the performance of

search methods implemented in Julia, as garbage collection time accounted for a big

share of the time it took for each function to run. Sometimes, garbage collection time

reached up to 75% of the time search methods took to run in the largest instances of

mazes.

Finally, the timing functions used were slightly different, as the @time macro in Julia

considers garbage collection time and the timeit() function in Python does not. For

example, the total time for DFS in the 201 x 201 maze was 0.1713 with 64.01% of

21

garbage collection time. Without garbage collection, the function would take

approximately 0.06164 seconds to run (Figure 13).

Having these considerations in mind, it should also be noted that Julia is a new

language, with not much content available for it when compared to popular languages

such as Python. For the version used in the present study, not even a debugger was

available. Nonetheless, coding in Julia was a very pleasant experience, and developers

should definitely experiment with it.

5.2 Study Limitations

In the present study, the recommended methods to improve the performance of Julia

were not used, although the Python implementation was also not optimized. In addition,

a very small set of mazes was used to run the search algorithms, and all of them were

small. This may have impacted the results, as literature suggests that Julia starts to show

its better performance with larger instances [9]. In addition, the timing functions were

not equally set-up, as Julia’s @time macro considers garbage collection time and

timeit(), in Python, does not.

5.3 Future Research

Future research should consider using larger instances of mazes to obtain more data and

provide more precise results. In addition, code in Julia should be optimized to take

advantage of the language’s type declaration. Methods that consider CPU time instead

of elapsed time should also be implemented to obtain more precise results and show the

potential better performance of Julia.

22

Appendices

This section contains the appendices for the present study.

A. Code for breadth-first search in Julia

23

B. Code for depth-first search in Julia

24

C. Code for heuristic and A* search in Julia

25

References

1. Julia. www.julialang.org (2018).

2. Balbaert, I. (2015) “Getting Started with Julia Programming”. Birmingham, Packt

Publishing.

3. Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A. (2012) “Julia: A Fast Dynamic

Language for Technical Computing”. September. Available on:

https://arxiv.org/pdf/1209.5145.pdf

4. Bezanson, J., Karpinski, S., Edelman, A., Shah, V.B. (2012) “Julia: A fresh

approach to numerical computing”. July. Available on:

https://arxiv.org/pdf/1411.1607.pdf

5. Chandel, A., Sood, M. (2014) “Searching and Optimization Techniques in Artificial

Intelligence: A Comparative Study & Complexity Analysis”, International Journal

of Advanced Research in Computer Engineering & Technology (IJARCET) Volume

3 Issue 3, March. Available on:

http://ijarcet.org/wp-content/uploads/IJARCET-VOL-3-ISSUE-3-866-871.pdf

6. Kouatchou, J. (2016) “Basic Comparison of Python, Julia, R, Matlab and IDL”,

NASA Modeling Guru. National Aeronautics And Space Administration,

December. Available on:

https://modelingguru.nasa.gov/docs/DOC-2625

7. Puget, J. F. (2016) “A Speed Comparison Of C, Julia, Python, Numba, and Cython

on LU Factorization”, IBM Community, January. Available on:

https://www.ibm.com/developerworks/community/blogs/jfp/entry/A_Comparison_

Of_C_Julia_Python_Numba_Cython_Scipy_and_BLAS_on_LU_Factorization?lang

=en

8. Russell, S. J., Norvig, P., & Canny, J. (2003). Artificial intelligence: A modern

approach.

9. Sayan, S. (2017) “Performance analysis: Julia, Python & C”. Available on:

https://hackernoon.com/performance-analysis-julia-python-c-dd09f03282a3

