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RESUMO 

  

Busca é uma das principais técnicas de solução de problemas em inteligência artificial. 

Este estudo aborda o problema de solução de labirintos utilizando busca e testa o 

desempenho de algoritmos de busca implementados em Julia, linguagem de alto nível 

desenvolvida para computação numérica. Foram feitos experimentos de tempo 

comparando o desempenho de Julia e Python. Os resultados sugerem que Julia tem 

melhor desempenho em instâncias maiores, o que corrobora a literatura sobre o tema. 

 

Palavras-chave: Julia, busca, labirinto.  
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ABSTRACT 

 

Search is one of the main problem-solving techniques in artificial intelligence. The 

present study addresses the maze solving problem using search and tests the 

performance of search algorithms implemented in Julia. Julia is a high-level language 

developed for numerical computing. Similar search algorithms were implemented in 

Python to show the difference between the two languages. The literature shows that 

Julia performs better with larger instances, which has been suggested by the results. 

  

Keywords: Julia, search, maze. 
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1 Introduction 

1.1 Motivation 

Performance is a crucial factor for programming languages used for scientific 

computing, as large amounts of data need to be analyzed. Conversely, there has always 

been the need to develop languages with a shallow learning curve. Fortran, a very 

popular programming language among researchers, is the short for Formula Translating 

System, and was developed as an effort to make it possible for scientists to write 

programs themselves. Julia claims to bring the best of both worlds: To be a high-level, 

high-performance dynamic programming language for numerical computing that 

combines the performance of C with the productivity of high-level languages.  

Search is one of the main techniques for problem solving in artificial intelligence, as 

many artificial intelligence problems can be modeled as state spaces that need to be 

explored to find a solution. Mazes are a simple abstraction where search techniques can 

be successfully applied. Therefore, in the present study, mazes are used to evaluate the 

performance of Julia using different search methods to solve them.  

1.2 Problem Statement 

Scientific programming requires high performance, yet domain experts tend to use 

slower dynamic languages, such as Python, due to the steep learning curve of high-

performing languages such as C. Julia is a high-level dynamic programming language, 

with good readability and shallow learning curve. One of its main advertised features is 

high performance, allowing it to approach and often match the performance of C, which 

is a reference in terms of speed. This would eliminate the performance for ease of use 

trade-off that usually occurs when using high-level dynamic languages.  
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1.3 Objectives 

The present study aims to evaluate the performance of Julia and find out whether it 

would be a suitable language for maze solving. Different search methods are 

implemented along with time measurements. For comparison purposes, the same 

methods are implemented in Python.  

1.4 Text Structure 

The present study is structured as the following chapters beyond the introduction: 

Chapter 2 describes the main concepts related to the study: the Julia programming 

language, the maze problem, and search algorithms used for maze solving. Chapter 3 

describes the methodology used to generate the results, which are presented and 

discussed on Chapter 4. Finally, Chapter 5 brings final considerations, limitations of the 

study and suggestions for future research on the subject. 
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2 Main Concepts 

This chapter describes the main concepts related to the present study. The first section 

provides an overview of Julia. The second section addresses search and the search 

methods implemented in the study. The third section describes the maze solving 

problem. 

2.1 Julia 

Julia is a high-level dynamic programming language for numerical computing [1]. It has 

been in development since 2009 and was first released in 2012 as an open source project 

available under the MIT License for open source software. Benchmarks show that it 

approaches and often matches the performance of C [2]. Figure 1 shows benchmark 

times for Julia.  

 

Figure 1. Benchmark times relative to C (smaller is better, C performance = 1.0). Source: 

julialang.org. 
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Julia’s design combines a number of technologies to deliver a high-performance 

language, while maintaining ease of use and increased productivity due to the high 

abstraction level provided as a dynamic high-level language. 

Julia works with an out-of-the-box LLVM-based just-in-time (JIT) compiler for just-in-

time generation of machine code. Declaring the type of variables in the code is optional, 

as it has a dynamic type system. Types are inferred based on data contained in the 

variables using an algorithm based on forward dataflow analysis [3]. 

Julia’s primary means of abstraction is dynamic multiple dispatch [4]. The majority of 

Julia functions are generic functions, which select native code implementations across 

multiple combinations of argument types. 

Numerical computing requires performance-critical numerical libraries, which depend 

on the details of the internal implementation of the high-level language. A main 

indicator of the validity of Julia’s design is that its standard library, which encompasses 

most of the core functionality of standard technical computing environments, is 

implemented in Julia itself. 

Julia is still a fairly young language, especially when the current version number is 

considered (0.6.3), but its foundation is stable, with no backwards-incompatible changes 

since the first release [2]. 

2.2 Search 

Search is one of the main problem-solving approaches in artificial intelligence. 

Search is the process of an agent constructing sequences of actions that achieve goals. 

Before solving a problem by using search, a goal must be identified and a well-defined 

problem must be formulated. 

A well-defined problem has an initial state, a description of all the possible actions 

available to the agent, a transition model, which defines what each action does, the goal 

test, which determines whether a given state is a goal state, and a path cost function that 

assigns a numeric cost to each path. In addition, some level of abstraction must be 

applied to remove as much detail as possible while preserving the validity of abstract 

actions and ensuring they are easy to carry out in the real world.  
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A solution to a problem is an action sequence leading from the initial state to a goal 

state, i.e., a path from the initial state to a goal state, whose quality is measured by the 

path cost function. An optimal solution has the lowest path cost among all solutions. 

Search algorithms work by considering different possible solutions, i.e., action 

sequences. First, the initial state is tested to verify whether it is a goal state. Then, the 

current state is expanded by generating a new set of states depending on the available 

actions. The states then can be expanded are called the frontier of the problem. The next 

step is to choose the next state and continue the search process. All search algorithms 

share this basic structure, named tree-search. They vary according to how they choose 

which state to expand next, i.e., the search strategy. Figure 2 shows a tree-search 

algorithm. 

 

Figure 2. Tree-search algorithm. Source: Russel/Norvig.  

Some problems can be defined to eliminate redundant paths by limiting the available 

actions. When redundant paths are unavoidable, a data structure called the explored set 

is added to keep track of visited nodes. This new algorithm is called the graph-search 

algorithm. Therefore, tree-search algorithms consider all possible paths to find a 

solution, while graph-search algorithms avoid considering redundant paths. Figure 3 

shows a graph-search algorithm. 

function TREE-SEARCH(problem) returns a solution, or failure  

initialize the frontier using the initial state of problem 

loop do 

if the frontier is empty then return failure 

choose a leaf node and remove it from the frontier 

if the node contains a goal state then return the 

corresponding solution  

expand the chosen node, adding the resulting nodes to the 

frontier 
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Figure 3. Graph-search algorithm. Source: Russel/Norvig. 

There are informed and uninformed search strategies. In uninformed search strategies, 

also called blind search, methods have access only to the problem definition, with no 

additional information about states. All they can do is distinguish a goal state from a 

non-goal state, and they differ based on the order in which nodes are expanded. 

Uninformed search examples are breadth-first search and depth-first search.  

Breadth-first search is a simple strategy in which the root node is visited and expanded, 

then all of its successors are expanded next, then their successors, and so on. This is 

achieved by using a FIFO queue for the set of all available nodes for expansion (i.e., the 

frontier). This way, new nodes go to the back of the queue and old nodes get expanded 

first. 

Depth-first search always expands the deepest node in the frontier, proceeding to the 

deepest level of the search tree, where nodes have no successors. A LIFO queue is used 

so the most recently generated node is chosen for expansion. 

In addition to the problem definition, informed search strategies use problem-specific 

knowledge to select nodes that are going to be expanded. The general approach is called 

best-first search, which uses an evaluation function to provide a cost estimate, and the 

node with the lowest evaluation is expanded first. Most best-first algorithms use a 

heuristic function, which provides the estimated cost of the cheapest path from the state 

to a goal state. 

function GRAPH-SEARCH(problem) returns a solution, or failure  

initialize the frontier using the initial state of problem 

initialize the explored set to be empty 

loop do 

if the frontier is empty then return failure 

choose a leaf node and remove it from the frontier 

if the node contains a goal state then return the 

corresponding solution  

add the node to the explored set 

expand the chosen node, adding the resulting nodes to 

the frontier 

only if not in the frontier or explored set 
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One thing to note is that the heuristic function must be admissible and consistent. An 

admissible heuristic never overestimates the cost to reach the goal. A heuristic is 

consistent if the estimated cost of getting to the goal from a node n is no greater than the 

step cost of getting from n to each of its successors n’ plus the estimated cost of getting 

from n’ to the goal. 

A* (A-star) search is an informed search method that uses a heuristic function to 

estimate the cost to reach the goal. It combines the cost to reach the node and the cost to 

get from the node to the goal to estimate the cost of the cheapest solution. 

2.3 Maze Solving 

Mazes can be modeled as state spaces that can be solved using search. Paths are divided 

into units with the same size that represent the states that can be accessed. Some states 

cannot be accessed, i.e., walls. Search strategies find the path from the initial state to a 

goal state by performing the available actions according to the maze type and the 

algorithm chosen. Figure 4 shows a few examples of different types of mazes. 

 

Figure 4: Mazes. A: Orthogonal maze (rectangular cells). B:  Sigma maze (hexagonal cells). C: 

Delta maze (triangular cells). D: Theta maze (circular maze). Source: mazegenerator.net. 
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3 Methodology 

This chapter describes the methodology used to develop the study. The first section 

presents the mazes used to run the search algorithms. The second section describes how 

the search methods were implemented. The third section describes how time 

measurements were made. 

3.1 Mazes 

The mazes explored were contained in a set of four text files with different sized mazes 

(21 x 21, 31 x 31, 41 x 41, and 201 x 201 cells). Mazes were orthogonal and had only 

one possible solution. Figure 5 shows one of the mazes used.  

 

Figure 5: 21 x 21 maze. Wall are represented as “X” and paths as “.”. The initial state is 

represented as “I” and the goal state as “F”. 
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Each maze was stored in a two-dimensional array with 1 representing walls and 0 

representing paths, and the start and the goal nodes were stored as tuples of coordinates. 

A dictionary of adjacencies was built from the array, having nodes (tuples of 

coordinates) as keys and arrays with neighboring nodes along with their direction (char 

N for North, S for South, E for East, and W for West) as values. The dictionary of 

adjacencies and the start and goal nodes were passed as arguments to all functions. 

3.2 Search Methods 

Standard data structures were used to implement the search methods, and iterative 

implementations of breadth-first search, depth-first search, and A* search were used. 

Graph-search, which avoids repeated states and redundant paths, was used in all 

implementations. Figures 4 and 5 show the pseudocode for the breadth-first search and 

depth-first search algorithms. 

 

 

Figure 6: Breadth-first search algorithm pseudocode. 

function BREADTH-FIRST-SEARCH(dictionary, start, goal) returns path and 

visited nodes, or failure 

SET queue to empty list 

SET visited to empty set 

SET path to empty string 

PUSH (start, path) to queue 

WHILE queue is not empty 

REMOVE firstItem from queue 

SET (current, path) to firstIitem 

IF current is equal to goal 

ADD current to visited 

RETURN path, visited 

IF current is not in visited 

ADD current to visited 

FOR (direction, neighbor) in dictionary key current 

PUSH (neighbor, path*direction) to queue 

RETURN failure 
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Figure 7: Depth-first search algorithm pseudocode. 

For A* search, the Manhattan distance was chosen as heuristic function. For points p1 

at (x1, x2) and p2 at (y1,y2), the Manhattan distance is calculated as below: 

|x1 - x2| + |y1 - y2| 

It is an admissible heuristic for the orthogonal mazes used in the present study, as it 

never overestimates the cost to reach the goal, which cannot be less than the distance 

between the goal and the start measured along axes at right angles.  

The absolute values were obtained using the abs function. Figure 6 shows the 

pseudocode for the A* algorithm. 

 

function DEPTH-FIRST-SEARCH(dictionary, start, goal) returns path and visited 

nodes, or failure 

SET stack to empty list 

SET visited to empty set 

SET path to empty string 

PUSH (start, path) to stack 

WHILE stack is not empty 

REMOVE lastItem from stack 

SET (current, path) to lastIitem 

IF current is equal to goal 

ADD current to visited 

RETURN path, visited 

IF current is not in visited 

ADD current to visited 

FOR (direction, neighbor) in dictionary key current 

PUSH (neighbor, path*direction) to stack 

RETURN failure 
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Figure 8: A* search and heuristic algorithm pseudocode. 

3.3 Time Measurements 

All time measurements were made using an Intel Core i3-4340 CPU @ 3.60 GHz with 8 

GB RAM running Windows 10.  

function A-STAR-SEARCH (dictionary, start, goal) returns path and visited nodes, or 

failure 

SET priorityQueue to empty list 

SET visited to empty set 

SET path to empty string 

SET order to 0 + heuristic(start, goal) 

SET cost to 0 

SET current to start 

PUSH (order, cost, path, current) to priorityQueue 

WHILE priorityQueue is not empty 

REMOVE lastItem from priorityQueue 

SET (order, cost, path, current) to lastItem 

IF current is equal to goal 

ADD current to visited 

RETURN path, visited 

IF current is not in visited 

ADD current to visited 

FOR (direction, neighbor) in dictionary key current 

PUSH (cost + heuristic(neighbor, goal), cost + 1, 

path*direction, neighbor) to priorityQueue 

RETURN failure 

 

function heuristic (cell, goal) returns minimum absolute distance between cell and 

goal 

 RETURN minimum absolute distance(cell[1] - goal[1]) + minimum absolute 

distance(cell[2] - goal[2]) 
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Julia 0.6.2.2 was used and scripts were executed from the Julia REPL. Times were 

measured using the @time macro, which is recommended by Julia developers for time 

measurement purposes. 

Python was used to provide a time reference. Python 3.6.5 was used and scripts were 

executed from the command line. Times were measured using the timeit() function. 

The next chapter presents the results obtained from the time measurements. 
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4 Results 

This chapter presents the results obtained from the time measurements of each search 

method implemented. 

4.1 Time Measurement Results 

Tables 1, 3, 5, and 7 show a sample of the time measurement results obtained for 

breadth-first search (BFS), depth-first search (DFS), and A* search (A*) for the 21 x 21, 

31 x 31, 41 x 41, and 201 x 201 mazes. Tables 2, 4, 6, and 8 show the mean results of 

the time measurements performed on each maze and Figures 8–11 illustrate these 

results. Python results are included as a reference, and all results are expressed in 

seconds.  

The 21 x 21 maze was fairly small and, as expected, the search methods were able to 

solve it very fast. A* implemented in Julia was the slowest method, taking up to 0.001 

seconds (Table 1), but still very fast.  

Table 1: Results for the 21 x 21 maze. 

21 x 21 

Julia Python 

BFS DFS A* BFS DFS A* 

0.0002 0.0001 0.0009 0.0002 0.0002 0.0005 

0.0002 0.0001 0.0010 0.0002 0.0002 0.0005 

0.0003 0.0001 0.0009 0.0002 0.0002 0.0006 

0.0002 0.0001 0.0009 0.0003 0.0002 0.0005 

0.0003 0.0001 0.0010 0.0003 0.0002 0.0005 

0.0004 0.0009 0.0010 0.0003 0.0002 0.0005 

0.0001 0.0003 0.0010 0.0004 0.0003 0.0008 

0.0002 0.0002 0.0010 0.0004 0.0002 0.0005 

0.0002 0.0001 0.0010 0.0004 0.0003 0.0008 

0.0003 0.0001 0.0009 0.0002 0.0003 0.0005 
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Table 2 and Figure 9 show that the mean time for each search method in both languages 

was quite similar. 

Table 2: Mean results for the 21 x 21 maze. 

21 x 21 - Means 

Python Julia 

BFS DFS A* BFS DFS A* 

0.0003 0.0002 0.0006 0.0002 0.0002 0.0010 

 

 

Figure 9: Mean results of time measurements for the 21 x 21 maze. 

The 31 x 31 maze was slightly bigger, but time measurements were similar to those 

obtained in the 21 x 21 maze. Table 3 shows that A* was considerably slower than BFS 

and DFS, taking up to 0.0025 seconds in Julia. However, some of the results for A* in 

Julia were achieved in half of this time, in a minimum of 0.0012 seconds.  

  

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

BFS DFS A*

21 x 21 

Julia Python
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Table 3: Results for the 31 x 31 maze. 

31 x 31 

Julia Python 

BFS DFS A* BFS DFS A* 

0.0002 0.0001 0.0011 0.0006 0.0002 0.0006 

0.0003 0.0001 0.0024 0.0006 0.0002 0.0008 

0.0002 0.0001 0.0012 0.0004 0.0001 0.0006 

0.0003 0.0002 0.0012 0.0004 0.0001 0.0010 

0.0002 0.0001 0.0023 0.0005 0.0002 0.0010 

0.0003 0.0001 0.0013 0.0004 0.0002 0.0007 

0.0002 0.0002 0.0024 0.0003 0.0001 0.0006 

0.0002 0.0001 0.0012 0.0006 0.0002 0.0010 

0.0004 0.0001 0.0013 0.0005 0.0002 0.0010 

0.0002 0.0002 0.0025 0.0003 0.0001 0.0006 

 

These intermittent results greatly affected the mean time for A* in Julia, as observed in 

Table 4 and in Figure 10. 

Table 4: Mean results for the 31 x 31 maze. 

31 x 31 - Means 

Python Julia 

BFS DFS A* BFS DFS A* 

0.0005 0.0002 0.0008 0.0003 0.0001 0.0017 

 

 

Figure 10: Mean results of time measurements for the 31 x 31 maze. 
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DFS implemented in Julia proved to be the most efficient method-language combination 

in the 41 x 41 maze, running in 0.0003–0.0006 seconds, almost always less than the 

minimum it took for other methods to run (Table 5).  

Table 5: Results for the 41 x 41 maze. 

41 x 41 

Julia Python 

BFS DFS A* BFS DFS A* 

0.0006 0.0004 0.0128 0.0008 0.0007 0.0023 

0.0005 0.0002 0.0037 0.0014 0.0013 0.0032 

0.0006 0.0003 0.0035 0.0014 0.0013 0.0034 

0.0007 0.0003 0.0088 0.0008 0.0008 0.0028 

0.0007 0.0003 0.0036 0.0012 0.0007 0.0018 

0.0007 0.0002 0.0034 0.0009 0.0008 0.0019 

0.0009 0.0003 0.0036 0.0009 0.0008 0.0025 

0.0011 0.0003 0.0034 0.0013 0.0012 0.0021 

0.0007 0.0006 0.0034 0.0014 0.0013 0.0019 

0.0291 0.0005 0.0035 0.0008 0.0008 0.0019 

 

In Julia, an extreme result of 0.0291 seconds was obtained for BFS. Similarly, an 

extreme result of 0.0128 seconds was obtained for A*. Again, these results affected the 

mean time for BFS and A* in Julia (Table 6 and Figure 11), which otherwise would 

have been similar to those obtained with Python. 

Table 6: Mean results for the 41 x 41 maze. 

41 x 41 - Means 

Python Julia 

BFS DFS A* BFS DFS A* 

0.0011 0.0010 0.0024 0.0036 0.0003 0.0049 
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Figure 11: Mean results of time measurements for the 41 x 41 maze. 

In the 201 x 201 maze, the results for BFS and DFS implemented in Julia exhibited 

inconsistencies, with the maximum time sometimes taking almost three times longer 

than the minimum time (Table 7).  

Table 7: Results for the 201 x 201 maze. 

201 x 201 

Julia Python 

BFS DFS A* BFS DFS A* 

0.0678 0.0723 0.1572 0.0442 0.0398 0.0983 

0.0661 0.0675 0.1693 0.0490 0.0459 0.0836 

0.1843 0.0679 0.1623 0.0458 0.0461 0.0809 

0.0687 0.0620 0.1620 0.0462 0.0485 0.0845 

0.0676 0.0690 0.1781 0.0447 0.0473 0.0861 

0.0692 0.0636 0.1712 0.0534 0.0456 0.0897 

0.0638 0.1894 0.1637 0.0464 0.0446 0.0867 

0.0685 0.1706 0.1745 0.0438 0.0520 0.0825 

0.0662 0.0819 0.1900 0.0430 0.0484 0.0839 

0.0685 0.1706 0.1745 0.0466 0.0475 0.0800 
 

A* search implemented in Julia was markedly slower than that implemented in Python, 

reaching almost double of the maximum time spent by A* implemented in Python 

(Table 8 and Figure 12). 
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Table 8: Mean results for the 201 x 201 maze. 

201 x 201 - Means 

Python Julia 

BFS DFS A* BFS DFS A* 

0.0463 0.0466 0.0856 0.0791 0.1015 0.1703 

 

 

Figure 12: Mean results of time measurements for the 201 x 201 maze. 

4.2 Time Measurement Functions 

The @time macro in Julia measures not only the time it takes for a function to run, but 

also returns the memory allocated and the garbage collection time. Figure 13 shows a 

sample output from the @time macro, taken from the 201 x 201 maze. 

 

Figure 13: Sample result from the time measurement function in Julia for the 201 x 201 maze. 

We can observe that garbage collection accounts for a large share of the time it takes for 

functions to run in Julia.  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

BFS DFS A*

201 x 201 

Julia Python



19 

 

 

In Python, the timeit() function was used, which by default, automatically disables 

garbage collection at the time of the measurements. Figure 14 shows a sample output 

from the timeit() function, taken from the 201 x 201 maze. 

 

Figure 14: Sample result from the time measurement function in Python for the 201 x 201 maze. 
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5 Conclusion 

This chapter presents the conclusions of the present study. The first section contains the 

final remarks regarding the results obtained. The second section states the limitations of 

the study and the third section suggests topics for future research on the subject. 

5.1 Final Remarks 

The results of the present study show that both Julia and Python are efficient languages 

for maze solving. Julia did not show any significant advantages over Python. Most of 

the times, Python even outperformed Julia. However, a few considerations should be 

made about this.  

First, the code used for the search algorithms was a simple implementation, with no 

type declarations. This makes it difficult to follow one of the main recommendations 

made by Julia’s developers, which is to maintain type-stability. Although types can be 

inferred based on the data contained, this makes it more difficult for the compiler to 

optimize code and may impact performance.  

In addition, memory preallocation, which is another recommendation to improve 

performance, was not used. This may have significantly impacted the performance of 

search methods implemented in Julia, as garbage collection time accounted for a big 

share of the time it took for each function to run. Sometimes, garbage collection time 

reached up to 75% of the time search methods took to run in the largest instances of 

mazes.  

Finally, the timing functions used were slightly different, as the @time macro in Julia 

considers garbage collection time and the timeit() function in Python does not. For 

example, the total time for DFS in the 201 x 201 maze was 0.1713 with 64.01% of 
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garbage collection time. Without garbage collection, the function would take 

approximately 0.06164 seconds to run (Figure 13).  

Having these considerations in mind, it should also be noted that Julia is a new 

language, with not much content available for it when compared to popular languages 

such as Python. For the version used in the present study, not even a debugger was 

available. Nonetheless, coding in Julia was a very pleasant experience, and developers 

should definitely experiment with it. 

5.2 Study Limitations 

In the present study, the recommended methods to improve the performance of Julia 

were not used, although the Python implementation was also not optimized. In addition, 

a very small set of mazes was used to run the search algorithms, and all of them were 

small. This may have impacted the results, as literature suggests that Julia starts to show 

its better performance with larger instances [9]. In addition, the timing functions were 

not equally set-up, as Julia’s @time macro considers garbage collection time and 

timeit(), in Python, does not.  

5.3 Future Research 

Future research should consider using larger instances of mazes to obtain more data and 

provide more precise results. In addition, code in Julia should be optimized to take 

advantage of the language’s type declaration. Methods that consider CPU time instead 

of elapsed time should also be implemented to obtain more precise results and show the 

potential better performance of Julia. 
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Appendices 

This section contains the appendices for the present study. 

A. Code for breadth-first search in Julia 
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B. Code for depth-first search in Julia 
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C. Code for heuristic and A* search in Julia 
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