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Abstract

This project endeavors to quantify the effectivity of a selection of computer vision
and pattern recognition techniques in the analysis of digital images of skin lesions to
diagnose melanoma. In dermatology, the ABCD criteria is a widely known method for
the detection of a malignant melanoma. This guide is a set of four identifying traits:
Asymmetry; Border irregularity; Color variegation; Diameter greater than 6 mm. Over the
past decade, various algorithms that examine digital images of skin lesions to detect the
presence of malignant melanomas have been developed and tested. Certain algorithms
using the analysis of border irregularity alone to provide a diagnosis have presented
noteworthy results. The most recent of these was developed by Dr. Richard Staunton of
the University of Warwick and Li Ma of the Hangzhou Dianzi University and presents
the best results with regards to accuracy and performance. This algorithm uses 13
features based on a set of statistical and geometric irregularity descriptors. The
experiment proposed is to first evaluate the images using only a geometric descriptor for
border irregularity and compare its effectiveness to Ma and Staunton’s multi-descriptor
analysis. Next, a metric is developed to represent the remaining 3 categories of the
ABCD melanoma diagnosis criteria to be used in conjunction with the Border
Irregularity metric. and increase levels of accuracy. A second round of evaluations is
performed to ascertain the influence of the additional metrics. The algorithms are run on
a labeled dataset of 70 images and the sensitivity, the true-positive rate indicating
number of accurately diagnosed images of melanoma, is calculated. Specificity
measures the true-negative rate and as such is of lesser importance as incorrectly
classifying a non-malignant lesion as malignant presents less critical consequences as
overlooking a malignant lesion. However, in both cases, specificity is also taken into
consideration in the final evaluation. In conclusion, a practical application of these
techniques is explored with the intent of providing solutions to the prevalent issue of
limited access to medical care. The process, maturation and findings of the undertaking

are detailed in this monograph.

Keywords: Computer Vision, ABCD Criteria, Pattern Recognition.
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1. INTRODUCTION

The first chapter of this monograph provides a high-level understanding of the

motivation behind this research. The scope of analysis is defined in order to
demonstrate the importance and potential value which may be added followed by a

brief description of the structure of the monograph to facilitate comprehension.

1.1 The Scope of Analysis

There is a noted undersupply of dermatologic services worldwide, common to
both developing and developed countries. The effects of such a deficit in the workforce
is clearly shown in the excessive mean wait times for appointment availability; it was
recently discovered that a patient must schedule a dermatologic consult an average of
33 days in advance in the United States [13] and 26 days in advance in Brazil [23].

Estimates of the current number of practicing dermatologists range from 8,000 to
8,500 in the United States and approximately 6,000 in Brazil. This is a pitifully
inadequate number of professionals to cater to the 300 million americans and 200
million brazilians. Researchers from the Case Western Reserve University and Yale
University performed a study that showed the direct correlation between dermatologist
density and melanoma mortality rates [2]. This finding is already significant in countries
like the United States and Brazil where there is an estimated ratio of 35,000 people per
dermatologist and even more severe in countries like South Africa with 3 to 4 million
people per dermatologist [21].

Dermatology specialists are mainly based in capitals and major cities, limiting
greatly the access to a dermatologist (See Figure 1). Technology has previously been
applied to other fields to overcome geographical barriers; this project evaluates the
efficiency and effectiveness of a series of computerized methods that may be applied to
the dermatologic diagnosis process, in an effort to assuage this disequilibrium in supply

and demand.
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Figure 1 - Mean dermatologist density among US counties, 2002-2006

[710 per 100000 people
M 0.001 to 1 per 100000 people
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[112.001 to 4 per 100000 people
W >4 per 100000 people

Source: ANEJA, S; ANEJA, S; BORDEAUX J.S [2]

In the field of dermatology, the vast majority of medical cases are diagnosed
visually, as the affected regions are at least partially superficial. According to CDC's
National Ambulatory Medical Care Survey in 2009, the top 5 reasons given by patients
for visiting dermatologists were actinic and seborrheic keratosis, benign neoplasm,
acne, malignant neoplasms and contact dermatitis and other eczema. These conditions
account for near 80% of medical consults. Of the 5 listed, 4 can be diagnosed through a
visual examination.

The National Cancer Institute defines a neoplasm as an abnormal mass of tissue
that results when cells divide more than they should or do not die when they should. A
neoplasm can also be called a tumor and may be benign or malignant. Melanoma is a
malignant neoplasm that begins in melanocytes commonly on skin but may also begin
in other pigmented tissues such as in the eye or in the intestines. The scope of this
project will be limited to skin melanoma diagnosis through digital image analysis, using
binary classification algorithms with melanoma/non-melanoma as prediction categories.

Within the ambit of neoplasm diagnosis, there are certainly more options than
melanoma and non-melanoma. Among the malignant neoplasms there are
non-melanoma skin cancers, consisting primarily of basal cell carcinomas and
squamous cell carcinomas [30]. Multinomial classification could be employed to include

these varieties of neoplasms in the analysis performed, yet would add significant
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complexity. On that account, it was decided that a more conservative approach would
be most adequate for the initial stages of this study, limiting the classifier algorithm to
two categories. As melanomas are more commonly fatal than non-melanoma malignant
neoplasms [30], melanoma diagnosis was defined as the the focus of the research.

Skin melanoma may be diagnosed through a visual examination performed by a
dermatologist. The definitive diagnosis is usually rendered on pathologic evaluation of
a lesional skin biopsy specimen [29]. The potential malignancy is recognized during the
initial (visual) examination, following which a biopsy is performed to confirm the
prognosis. As such, although image analysis systems are not to be relied upon for a
complete diagnosis, they may be a viable solution to perform a triage and prioritize

examinations.

1.2 Monograph Structure

The monograph is organized into 7 chapters, these being Introduction,
Fundamentals, Approach, Reimplementation, Implementation, Analysis and
Conclusion. The first chapter describes the domain of the issue, that of automated
melanoma detection, as well as a high level description of the solution proposed. The
introductory chapter also provides a basic explanation of the medical terms employed.
Fundamentals discusses previous studies in related fields and how prior findings will
be included in this monograph. Approach details the solution developed, describing the
components and logic pertaining to the image analysis system. Reimplementation
describes Staunton and Ma’s Border irregularity analysis algorithm and the process of
reconstructing it's code. The Implementation chapter documents the development of
three additional algorithms to be used in conjunction with Staunton and Ma’s. Analysis
outlines the execution of the image analysis system, resulting in a dataset to be used in
the classifier system as well as the intermediate results obtained during testing.
Conclusion will summarize the performance of the classifier system, its findings and

ongoing work.
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2. FUNDAMENTALS

The following chapter details the identifying traits used to detect melanoma in a
visual examination and a description of previous studies related to the employment of

computer vision methods and algorithms for dermatologic diagnosis.

2.1 ABCD Criteria
The ABCD acronym was first coined in the article Early Detection of Malignant

Melanoma:The Role of Physician Examination and Self-Examination of the Skin [7]
written by Dr. Robert Friedman, Dr. Darrell Rigel and Dr. Alfred Kopf of the New York
University School of Medicine in 1985. The article was prepared in conjunction with the
Task Force on Preventive Dermatology of the American Academy of Dermatology and
the American Cancer Society; the ABCD Criteria was meant to be used by both the lay
public and health professionals to assist in the early detection of melanoma and
consequently increase survival rates [7]. ABCD stands for Asymmetry, Border

irregularity, Color variegation, and Diameter generally greater than six mm [7].

Asymmetry

Figure 2 - Asymmetry: Malignant and benign example
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Source: prof. Ricardo Barbosa Lima of UNIRIO [16]

“Unlike benign pigmented lesions, which are generally round and symmetrical, early

malignant melanomas are usually asymmetrical” [7] (Figure 2)
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Border irregularity

Figure 3 - Border irregularity: Malignant and benign example
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Source: prof. Ricardo Barbosa Lima of UNIRIO [16]

“Unlike benign pigmented lesions, which generally have regular margins, the borders of

early malignant melanomas are usually irregular. “ [7] (Figure 3)

Color Variegation

Figure 4 - Color Variegation: Malignant and benign example

EVEN COLOR
“BENIGN™

Source: prof. Ricardo Barbosa Lima of UNIRIO [16]

“‘Unlike benign pigmented lesions, which are generally uniform in color, macular
malignant melanomas are variegated, ranging from various hues of tan and brown to

black, and sometimes intermingled with red and white.” [7] (Figure 4)
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Diameter Size

Figure 5 - Diameter size: Malignant example
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Source: prof. Ricardo Barbosa Lima of UNIRIO [16]

“Unlike most benign pigmented lesions, which generally have diameters less than six
mm, the diameters of macular malignant melanomas when first identified are often more

than six mm.” [7] (Figure 5)

It is possible that the fourth trait, ‘Diameter greater than 6 mm’, may not be as
symptomatic as the previous 3 traits. A study performed in 2004 by Dr. Friedman, Dr.
Rigel, and Dr. Kopf and other colleagues of the New York University School of
Medicine and the Sydney Melanoma Unit suggested a reexamination of the ABCD
criteria in view of data attesting to the existence of melanoma with a diameter smaller
than 6 mm [1]. Although the conclusion reached was that the available data did not
support a lowering of the 6mm threshold, the study emphasizes the need to use the
ABCD traits in conjunction as there are cases of small-diameter melanomas.

During the same study by Kopf and his colleagues, detailed in the article Early
Diagnosis of Cutaneous Melanoma: Revisiting the ABCD Criteria [1] it was concluded
that an additional criterion ‘E’ should be added to the acronym, representing the
evolution of pigmented lesions. It is said that “Physicians and patients (...) should be
attentive to changes (evolving) of size, shape, symptoms (itching, tenderness), surface
(especially bleeding), and shades of color.” [1] However, this additional criterion cannot

be well represented by a digital image and as such is not included in this experiment.
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2.2 Related Work

In dermatology, the ABCD guide is a widely known method for the identification
of a malignant melanoma [25]. This guide is a set of 4 traits common to malignant
melanomas: Asymmetry; Border irregularity; Color variegation; Diameter greater than 6
mm. Symmetry in medical imaging has played an important role in contributing to
diagnosis in other fields of medicine. An example of this is measuring asymmetry on
mandibles from children with cleft lip and palate and children with plagiocephaly
syndrome [10], measuring the asymmetry of the hippocampi to classify schizophrenic
patients [10] and using the asymmetry principle in the detection of breast tumors [14].

Extensive research has been performed regarding the digital analysis of border
irregularity in relation to melanoma diagnosis. Some of these studies indicate that the
diagnosis of malignant melanomas can be based on the analysis of the shape of the
lesion alone [15]. Many of said studies which present most noteworthy results make use
of Wavelet Transform Analysis.

The term ‘wavelet’ (originally in French, ‘ondelettes’) was first coined in 1982 by
the French geophysicist Jean Morlet [24], one of the pioneers in Wavelet Analysis.
Morlet sought an alternative to the short time Fourier Transform [6] which is a
modification of the Fourier transform to permit the analysis of non-stationary signals.
Assuming a time-domain signal as the raw signal, a Fourier transform could be used to
obtain the Frequency Spectrum. The Fourier Transform contains no information with
regard to time, ergo the need for the short time Fourier Transform for a non-stationary
signal. The short time Fourier Transform performs sequential Fourier Transforms on
segments of the signal which are (near) stationary.

The disadvantage of the short time Fourier transform lies in the necessary
sacrifice of either good time resolution or good frequency resolution according to the
window used in the kernel function. To gain good time resolution in the high-frequency
components as well as good frequency resolution in low-frequency components in a
single transform, Morlet proposed an alternate method for generating the transform
functions. In sum, instead of using a window of changeable width to perform a Fourier
Transform on a time interval of the signal, Morlet took a windowed cosine wave whose

width was shifted to adjust to low or high frequencies and shifted these functions in time
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as well [6]. As a result, the transform functions relied on two parameters: the time
location and scale, which represents the frequency. Since then, the basis Wavelet
theory has been built upon by a series of scientist who have explored its applications in
a variety of fields.

There are two main trends in the use of Wavelet Transforms [12], the Continuous
Wavelet Transforms and the Discrete Wavelet Transforms. The Continuous Wavelet
Transforms (CWT) consists of an analysis window (function) of varying scale being
shifted not only in scale but in time, obtaining the signal product and integrating over all
times. In the Discrete Wavelet Transform (DWT) low and high pass filters are used to
analyze low and high pass frequencies, respectively, removing redundancy present in
the CWT. The CWT’s redundancy does have a purpose, emphasizing traits and adding
readability. The DWT reduced computational time due to reduced redundancy may be
the cause of its greater popularity among engineers [12].

A study performed by K.M. Clawson of the University of Ulster uses the Harmonic
Wavelet Transform to analyze lesion border irregularity, claiming maximum
classification accuracy of 93.3% with 80% sensitivity [5] when tested on 30 cutaneous
lesions. The Harmonic Wavelet Transform was developed by David Newman in 1993
[26]. This name may be derived from its frequency resolution, “confined exactly to an
octave band so that it is compact in the frequency domain” [26]. However, this fixed
resolution throughout the frequency band inhibits the separation of signal components
[19] which in turn hinders the distinction of structural and textural irregularities. It is the
structural irregularity that has clinical importance for melanoma diagnosis [19]. In 2012,
Li Ma of the Hangzhou Dianzi University and Richard C. Staunton of the University of
Warwick circumvented this difficulty by using a Discrete Wavelet Transform to single out
the structural components [19]. Their study involved 134 images of skin lesions; of these
72 were of melanomas and 62 of moles. The most significant distinction between
melanomas and moles is that moles are benign neoplasms whereas melanomas are
malignant neoplasms. The algorithm could be summarized as a two-step procedure:
multi-scale wavelet decomposition of the extracted contour followed by the selection of

significant sub-bands.
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Wavelet decomposition was used to extract the structure from the contour which
were then modeled as signatures with scale normalization to give position and
frequency resolution invariance. Energy distributions among different wavelet
sub-bands were then analyzed to extract those with significant levels and differences to
enable maximum discrimination. A set of statistical and geometric irregularity
descriptors were applied at each of the significant sub-bands, followed by an
effectiveness evaluation to select which descriptors contribute to an accurate diagnosis.
The effectiveness of the descriptors was measured using the Hausdorff distance
between sets of data from melanoma and mole contours. The best descriptor outputs
were input to a back projection neural network to construct a combined classifier
system. This algorithm will be described in greater detail in the implementation chapter
of the monograph.

Li and Staunton’s optimum combination resulted in 90% specificity and 83%
sensitivity, similar to Clawson’s findings. These results were obtained from a small data
set consisting of 18 images, 9 of which were of melanomas and 9 of moles. With a
larger training set of 67 images (31 moles and 36 melanomas), these numbers fell to
83% sensitivity and 74% specificity, which signifies that a greater number of

non-malignant moles would be classified as melanomas.

Table 1 - Comparison of classification performances

Scheme Specialty Sensitivity Area of ROC
Single scale features with small sample set 0.64566 0.69444 0.69534
Single scale features with large sample set 0.87903 0.55556 0.75179
Original multi-scale features with small sample set 0.83871 0.69444 0.81541
Original multi-scale features with large sample set 0.80645 0.69444 0.81989
Selected multi-scale features with large sample set 0.74194 0.83333 0.83333
Selected multi-scale features with small sample set 0.90323 0.83333 0.89068

Source: MA, L.; STAUNTON, R.C. [19]
These findings are incredibly significant given the high levels of accuracy and

reduced computational cost. It is of interest to analyse this algorithm in conjunction with
remaining three features of the ABCD criteria: asymmetry, color variegation and

diameter size.
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3. APPROACH

This study implemented and evaluated a multi feature image analysis system in
an effort to gauge the effectivity of its employment in melanoma diagnosis. It became
necessary to first identify the significance of each feature in the classification of skin
lesions to determine what combination of features provide the most accurate results.

Li Ma and Richard C. Staunton generously agreed to the inclusion of their
algorithm in this experiment. However, the original software for the algorithm detailed in
the article Analysis of the contour structural irreqularity of skin lesions using wavelet
decomposition [19] could not be recovered. To circumvent this contretemps, the
algorithm was reimplemented in consultation with Ma and Staunton as part of the study.

Our approach is divided into two parts; the first is Ma and Staunton’s algorithm,
which uses border irregularity to determine malignancy. Border irregularity is one of four
identifying traits used in the diagnosis of melanoma. Studies have shown that accuracy
levels vary according to the traits included in performing diagnosis, both singly and in
combination. Table 2 summarizes the findings of research led by L. Thomas in 1998
[30], displaying distinct fluctuations in performance when combining multiple criteria
Therefore the second part of the system consists of three algorithms to formulate
additional metrics, these being Asymmetry, Color variegation and a simple geometric

border irregularity descriptor.

Table 2 - Summary of Key ABCD(E) Sensitivity and Specificity Studies

Total No. No. of
Source of Lesions Melanomas Criteria Tested Sensitivity, % Specificity, %

Thomas et al,* 1998* 1140 460 A 57 72

B 57 71

C 65 59

D 90 63

E 84 90

=1 Criterion 97 36

=2 Criteria 89 65

=38 Criteria 66 80

=4 Criteria 54 94

All 5 criteria 43 100
McGovern and Litaker,'® 1992 192 6 BCD criteria applied jointly 100 (95% ClI, 54-100) 98 (95% ClI, 95-99)
Healsmith et al,* 1994+ 165 85 =1 of the ABCDEs 92 (95% Cl, 82-96) Not reported

Source: Thomas, L. et al. [30]
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Staunton and Ma’s algorithm uses 13 features based on a set of statistical and
geometric border irregularity descriptors. In addition, this algorithm extracts the
structural component of the lesion from the raw image data, eliminating the misleading
textural component. The simple geometric descriptor is compared with Ma and
Staunton’s algorithm to measure the added accuracy of the 13 features used as well as
the impact of refining the raw data. Subsequently the two descriptors for Asymmetry and
Color variegation are included in a combined algorithm. As stated by Kopf and his
colleagues [1], “It should be emphasized that not all melanomas have all 4 ABCD
features. It is the combination of features (eg, ABC, A+C, and the like) that render
cutaneous lesions most suspicious for early melanoma.” If this is true of in-person
examinations performed by a specialist, it may also be implied of computer vision
analysis.

Combining the 13 features in Staunton and Ma’s algorithm and the 3 additional
metrics, a total of 16 features are attributed to each image of a skin lesion, recorded in
the data set which is run through a Back Propagation Neural Network to classify each
instance as melanoma or non-melanoma. The back propagation (BP) neural network
algorithm is a multi-layer feedforward network trained according to error back
propagation algorithm and is one of the most widely applied neural network models
[11]. This model was used in the development of Ma and Staunton’s algorithm and will
continue to be used to maintain consistency. The algorithm is measured for sensitivity
and specificity levels in addition to overall accuracy.

Sensitivity, also known as the true-positive rate, is given a higher priority than
specificity, the true-negative rate, as the correct identification of a malignant or
potentially malignant tumor is of greater consequence than a false positive diagnosis,
within reasonable levels. Of course, the inconvenience of an false positive diagnosis is
by no means irrelevant, so despite specificity being a secondary priority, this category
of performance is still carefully observed. As achieving 100% accuracy is an unrealistic
expectation and the biopsy a requirement for a definitive diagnosis [29], specialist
confirmation remains necessary. This project seeks to contribute to the discussion of
whether it is advantageous to incorporate computer vision algorithms to current

traditional diagnosis methods.
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4. REIMPLEMENTATION

Li Ma and Richard C. Staunton of the Hangzhou Dianzi University and Warwick
University [19] developed an algorithm to analyze skin lesion border irregularity using
multi-scale wavelet decomposition. As the code for the algorithm was not recovered, it
was necessary to re-implement it so as to enable its inclusion in this study. The code
was originally written in Matlab [34], a high-level technical computing language and
interactive environment for algorithm development. However, due to budget limitations
the algorithm was re-implemented in Octave [35], an open source alternative
comparable to and generally compatible with Matlab. The algorithm is roughly divided
into two phases: Wavelet decomposition of a lesion contour and Sub-band descriptions
of contour structural components. Following is a summarized and commented
description of the algorithm extracted from the article Analysis of the contour structural
irreqularity of skin lesions using wavelet decomposition [19].

1. Wavelet decomposition

1.1. Represent the contour in 1D signal

The contour of a skin lesion in an image is described by the points
C ={x1.y1.%,Y2,..Xy.¥y} - [These points were obtained using a Canny edge
detector function.] To represent this 2D data as 1D, the contour is modeled as a

signature C, = {r,, r,,...ry} where the radial distance from the geometric center

r; = \/(x,.—x’)2+(yi—y’)2 ,i=1,2,.n and (x’, y’) is the coordinate of the

geometric center of the closed contour.

1.2 Scale normalization

It was noted that many moles have a shorter contour for a given nominal area than do
melanomas. Together with size variability between the samples in the database, this
can lead to variations in estimated frequency and resolution in the frequency domain.
Scale normalization is required to enable a comparison between moles and

melanomas in this domain. The proposed normalization was modified to give radius:

r({fﬂ)m -1, r()<T
K= i=1,2,...N
r({i i—‘) otherwise
N
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Where i is an integer used to resample the contour points with a spacing distance of
(n/N) and the ceiling function [ ]is used to produce an integer index to . The
values u: and w2 are the averaged radial distances of all the melanomas and benign
moles respectively in the data base. T'is a threshold.

1.3 Wavelet decomposition

Wavelet decomposition is a powerful tool for multi-scale signal analysis. By using a
pair of low-pass and high-pass filters [the lesion contour signature] is decomposed
into approximation and detail coefficients with the approximations feeding into the
next level of decomposition, and thus creating a decomposition tree. The tree

structure of such a 1D wavelet decomposition is shown in Figure 6.

Figure 6 - Wavelet decomposition tree

c, H —

H D!

Source: MA, L.; STAUNTON, R.C. [19]

The approximate and detail coefficients (see section 2.2) at scale i are given by
A ={d.,d,.d,} and D,={d,.d,..d,} respectively where M =N/2". It is
important to recall that the Discrete Wavelet Analysis uses windowed cosine wave
whose width is successively modified. The width, also known as compression of said
wave is represented by a scale [6]. The smaller the scale, the more narrow the wave
ergo the higher the frequency. The inverse is also true; the greater the scale, the
wider the wave ergo the lower the frequency. As the scale increases, the
approximate coefficients are further decomposed into low and high frequency
components at the next higher scale. Generally the textural components of a contour

occupy the lower scale, higher frequency bands, with the energy distributed evenly
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between bands to give a relatively small total energy within each. However the
structural components generally have a larger energy and occupy the lower
frequency bands. By using wavelet decomposition to level s, an original contour
signature C-is transformed to a series of sub-band signals 4%, D*, D!, ...D! covering
the whole signal frequency space at [0, 1/2° fmax], [1/2' fmax, 1/2"'fmax], i=s, s-1,
..., 2, 1 and fmax is half the sampling frequency. This represents a concatenation of
the frequency bands from the lowest to the highest. The task is to identify at which
decomposition levels the structural components of a lesion contour can be extracted
and which sub-bands in the frequency domain provide significant discriminative
information

2. Sub-band descriptions of contour structural components

The Discrete Wavelet Transform was selected for use over the Fast Fourier
Transform because it presents the capability of confining signal components to
dyadically increasing width frequency bands with different resolutions. This enables
the distinction between structural and textural components, an essential factor in
Staunton and Ma’s algorithm.

2.1 Significant sub-band selection

To obtain just the contour’s structural components ignoring the less relevant textural
components, several lower frequency sub-bands need to be identified from which to
reconstruct that portion of the original contour using both multi-scale approximate and
detail coefficients. The evaluation of the significant sub-band range was
accomplished by performing a Hausdorff distribution analysis between each of the
sample sets at each level of wavelet decomposition. When analyzing the
decomposition of a contour signal, the total energy at any decomposition level
indicates the significance of that sub-band frequency to the original signal. The

energy of a wavelet sub-band D; is given by:
— N2 s
Ej_%:(Dj) j=1,2,..n

2.2 Procedure for investigating significant sub-band selection

An algorithm was developed to identify those sub-bands which enabled the largest
discrimination between moles and melanomas. This was done with a set of p benign
mole contours and a set of g melanoma contours

Step 1. For a preset maximum level of wavelet decomposition n, calculate the

wavelet energy for every contour from the set of moles and melanomas. Then
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calculate the energy of each sub-band [obtained from the wavelet decomposition to
level n].

Step 2: Form energy sets from the individual energies calculated for each
transformed benign mole and melanoma contour at each sub-band.

Step3. Compute the Hausdorff Distance value between energy sets of moles E» and
melanomas Em for each band. This measures the discrimination between the two
classes for each sub-band.

Step 4. Plot the distribution of the Hausdorff Distance with respect to  each
sub-band. The sub-bands with the highest HD are considered as the most significant

and used in the final classification.

2.3 Extraction of the structural component of a lesion contour
Based on the theory of wavelet reconstruction, the structural component of a lesion
contour is given by combining the significant coefficient groups from 4* , DS, D*/,
...D! where the original decomposition was stopped at level s. The decomposed detail
sub-bands need to be divided into high-scale (low-frequency) and low-scale
(high-frequency) groups using a threshold s, so that:
C.={A"+D*+ D" +.. + D"}
C, ={D"'+ D" +... + D"}
Where C, contains lower-frequency information and represents the structural
component of the contour, and C, contains higher-frequency information and
represents the textural component. Choosing both s and s: are difficult tasks, as a
large s generates many narrow sub-bands close to zero frequency. Although these
will contain structural information that will be relatively free of textural irregularity,
there is an extra cost in increased computational complexity. A small s can lead to
structural contours contaminated with textural irregularity. The value of s: chosen is
crucial to obtain useful structural and textural contour information. The significant
sub-band selection process described in Section 2.2 was run on the test data which
lead to the straightforward selection of a single, general value for s: . The frequency
bands that contained significant discrimination information were sub-bands D’ to D,
and as such were selected as the significant levels.

It is simple to reconstruct the structural components of the contour after the
significant levels in the wavelet decomposition stack have been determined. Figure 7

shows the extracted contours of a mole (a,b,c) and a melanoma (d,e,f), where Figure
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7 a) and d) are the original contours, Figure 7 b) and e) are the corresponding
contours reconstructed from 4° and D’ to D’. The approximation coefficient, 4° has
been included to give the basic structure of the contour onto which the more complex
textural part has been superimposed. Figure 7 c) and f) are reconstructed from 4°
and D°to D’ (s = 9, s:= 6), that is the boundaries representing the structural portion of
the original lesion. With the textural information removed, these have the property of
the highest discrimination between different lesion classes. In the remainder of the
monograph these significant sub-bands will be referred to as the structural
sub-bands.

Figure 7 - Contours after wavelet reconstruction

a b 4

Source: MA, L.; STAUNTON, R.C. [19]
Observing Figure 7, one can easily note the striking difference in discrimination

based on textural and structural components. The contours in b) and e) reconstructed
from the textural components of the mole and melanoma respectively present an almost
imperceptible difference and would add very little to a classification system. In contrast,
the contours c) and f) which were reconstructed from the structural components are
clearly distinctive. As the significant sub-band selection was performed during Ma and
Staunton’s study, leading to the selection of a single value for s, with the approval of Li
Ma, this phase of the algorithm was bypassed; the re-implementation uses the selected

s, value directly.
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Once the significant sub-bands were identified, it was possible to calculate the
series of border irregularity measures the algorithm is comprised of. Ma and Staunton
used 7 different measures, these being either statistical or geometric based [19]. The
measures and their respective formulas are listed below as described in Ma and
Staunton’s article:

3.1 Statistical measures
The following features related to contour irregularity were defined:

(1) The mean of the energy of D’ at each significant level, given by:

N
= (Z di> / N where d, is the the ith component of D).
i=1

N .
(2) Entropy of wavelet energy, w; = — Y pllog(p))
; . ' i=1
where p’l = E’l /E’ is the energy probability of the ith component of I, F'is the total

energy of the coefficients in band j as calculated by [Ej = Z(D;)Z j=1,2,..n],

. 12
and Efl = |D§ ! . The energy entropy measures the magnitude of signal fluctuations.

(3) Ultimate width. For any signal X = {x,,x,,..xy} , the ultimate width is defined as
width = Zf where u and ¢ are the mean and variance of signal X. A large width

indicates sharp variations.

3.2 Geometric based irregularity measures
At each significant level j, a supposed structural component C,, s>=j=s, of a

contour is reconstructed from the wavelet coefficients, C; =A+ D'+...+D . In

addition to a simple variance measure (4), the other irregularity measures of the
reconstructed contours are evaluated as:

N
(5) Radial Deviation, RD = 3 [

where 7 is the mean radius of Ehe contour signature.

=

(6) Contour Roughness, R, =

L —
N "’i Tis1

1l
—_

. A C. ® Ss
(7) Irregularity Measure, IM = %(Ss))

where S, is reconstructed from the approximate data, 4°, at the significant level s, and
@ is the exclusive-or operator.

With the seven irregularity measures described above and the four significant

sub-bands (D% D’, D% and D°), there would be a total of 25 features: measures (1) to (6)
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for each of the four significant sub-bands (24 features thus far), and IM (irregularity
measure 7) at the threshold scale s,. However, these features were filtered to remove
redundancy. This was done by a correlation analysis followed by performance based
feature selection. Correlation analysis computes the correlation coefficient for a pair of

features ¢,

i

t, from a feature vector F={1, t, ..., t, } and a sample set S={x, x, ..., x,, /. A
large correlation coefficient indicates redundancy [19]. The performance based feature
selection requires calculating the probability distribution of each feature’s contribution to
a correct classification, tested on both benign and malignant sample sets. The
accumulated probability is found, then each feature is verified with an established
classification error threshold [19].

Once the correlation analysis and the performance based feature selection was
executed, 12 of the original 25 features were removed due to redundancy. The
remaining 13 features are Average Energy(1) for sub-band 6-8; Wavelet Entropy(2) for
sub-bands 6-9; Ultimate Width(3) for sub-bands 6, 7 and 9; Radial Deviation(5) for
sub-band 6; Contour Roughness(6) for sub-band 7; and lrregularity Measure(7) for

sub-band 6. The selected and eliminated features are displayed in Table 3.

Table 3 - Final feature selection

Sub-band Average  Wavelet  Ultimate  Variance  Radial Contour Irregularity
energy Entropy Width deviation Toughness oasure

6 v v v v v

7 v v v v

8 v v

9 v v

Table in accordance to information from MA, L.; STAUNTON, R.C. [19]

Similarly to the significant sub-band selection procedure, as the redundant
features were previously identified during Ma and Staunton’s study, with the approval of
Li Ma, the identification of redundant features was not done; the re-implementation uses

the final feature selection directly.
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5. IMPLEMENTATION

This chapter details the development of the algorithms for the three additional
metrics used in this experiment. Difficulties encountered and modifications to the
original plan of action are included due to their contribution to the overall knowledge
acquired and possibly influence over final results. First the edge detector used is
described due to its fundamental contribution to the outcome of the algorithm, followed
by the implementation of algorithms for the simple geometric border irregularity metric,
the asymmetry metric and color variegation metric. A proposed algorithm for computing

diameter size is also presented.

5.1 Canny Edge Detector

In order to perform the calculations for each metric in the ABCD criteria, it is
necessary to first single out the skin lesion from the image, obtaining a sequence of
coordinates of its contour. There are many edge detection algorithms that could be
used, the one selected for this study is the Canny Edge Detector, developed by John
Canny. The algorithm, detailed in the monograph A Computational Approach to Edge
Detection [3], is notably effective and as such it is ubiquitously used. A comparison with
the Laplacian of Gaussian, Robert, Prewitt, and Sobel edge detector operators has
shown that in almost all scenarios, the Canny Edge Detector exhibited superior
performance, albeit with the disadvantage of being computationally more expensive
[20]. However, as the amount of data to be processed is not inordinate, computational
time may be sacrificed to gain accuracy in edge detection. Additionally, the hysteresis
thresholding component of the Canny Edge Detector allows a form of customization to a
specific detection objective, as is the case with extracting the contour of the skin lesion.

The Canny Edge Detector algorithm can be resumed in four main steps: Image
filtering; gradient magnitude computing; Non-maximum suppression and hysteresis

thresholding to trace the edges.
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1 - Image filtering

The Canny Edge detector is highly susceptible to noise; the first step in the
algorithm is filtering the image to reduce the misleading effect of noise pixels through a
step edge detector. Canny calculated the optimal filter for this task, named ‘Filter
number 6’ in his article [3]. However, he observed that although the first derivative of
Gaussian operator performed approximately 20% worse than the optimal operator in the
performance evaluations, this difference is hardly noticeable when visualizing their
effects on real images. Figure 8 contains a graph showing the similarities between the
optimal step edge operator and the first derivative of a Gaussian. As the optimal
operator requires much more computational effort than the first derivative of the
Gaussian, the image is convolved with a Gaussian filter to obtain the desired noise

reduction.

Figure 8 - Comparison of optimal and Gaussian operator.

Fig. 6. (a) The optimal step edge operator. (b) The first derivative of a

Gaussian.

Source: CANNY, John. [3]

2 - Gradient magnitude computing

The gradient of an image indicates the direction of a rapid change in intensity
and as such provides information regarding the orientation of the edge, whether it is
horizontal, vertical or diagonal. In a two dimensional coordinate system as is this case,
the gradient is given by

Vi=£+%

the vector composed of the partial derivatives of f. A horizontal gradient is given by

Vf= 0+j—§
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as the change is in the y direction; a vertical gradient is given by
Vi=2+0

as the change is in the x direction. The magnitude of the gradientis given by

=+ ()

and is calculated for every pixel in the image.

3 - Non-maximum suppression
Once the gradient magnitude calculation is performed on each pixel, its value is
then verified to determine whether it assumes a local maximum in the gradient direction.

The gradient direction is given by

0 = tan”' <a—f / a—f>

ax 1 ay

The implementation of the algorithm does not compute the gradient direction so
as to avoid performing a division calculation. Instead, the two derivatives are checked
for the same sign and then the largest of the two derivatives is singled out. The pixel
magnitude is then compared to its two neighbor’s values in the four possible directions,
these being north - south, east - west, northeast - southwest and northwest-southeast.
Linear interpolation is used between the two neighbor pixels for greater accuracy. Only
local maximums are considered edge candidates, therefore if the central pixel’'s
magnitude is not greater than that of its two neighbors it is suppressed’ by setting its
edge strength value to zero.
4 - Hysteresis thresholding

The pixels that correspond to a local maximum and in effect possess a high edge
strength value are set aside as the edges detected in the image. Yet the selected edge
pixels can be further refined through specifying a threshold as the final comparison to
determine an existing edge. Hysteresis thresholding is done using a low and a high
threshold. The low threshold detects weak edges and the high threshold the strong
edges. It was necessary to experiment to determine the optimal combination of
thresholds for the situation in question, that of singling out the skin lesion in the image.

The effects of different threshold levels can be seen in Figure 9.
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Figure 9 - Threshold performance comparison

The original image Border detection with a Border detection with a Border detection with a
low threshold of 0.5 and low threshold of 2 and low threshold of 2 and
high threshold of 1. high threshold of 5. high threshold of 9.5.

Source: Testing performed on March 2nd, 2014.

The low threshold detected texture traces and fine edges; as the skin lesion has
a considerably distinct edge a high threshold was proven to be the most adequate. With
melanoma lesions the contour is not continuous (See Figure 10); this of course is
expected due to the lesion’s characteristic asymmetry, border irregularity and color

variegation. Ergo, it is presumed that this will not be misleading in the final results.

Figure 10 - Threshold performance on image of melanoma

The original image Border detection with a
low threshold of 2 and
high threshold of 9.5.

Source: Testing performed on March 2nd, 2014.

During the course of testing, it became apparent that the algorithm as it is will
only function properly if applied to images with a single lesion. Additionally, the images
may need to be adapted to eliminate non-skin elements. In Figure 10, the original image
shows what appears to be the hem of an item of clothing in the upper right corner. This
is classified as a strong border as displayed in the image tracing the detected borders; if
not treated, it will be inaccurately handled as part of the skin lesion in the subsequent

phases of the algorithm.



31

The re-implementation of Ma and Staunton’s algorithm was written in Octave,
which has a built-in Canny Edge Detector function. The geometric Border irregularity
metric, the Asymmetry metric and the Color variegation metric algorithms were written in
Java [36]. For this phase of the process, Tom Gibara’s Java implementation of the
Canny Edge Detector [8] algorithm is used. The implementation of the Canny Border
Detector developed by Tom Gibara was slightly modified so as to return a list of

coordinates of the detected edge pixels as opposed to an image of the traced edges.

5.2 AB*CD Metrics

5.2.1 A - Asymmetry Metric
Asymmetrical skin growths, in which one part is different from the other, may

indicate melanoma. [32]

Symmetry is defined mathematically as invariability regardless of
transformations, an absolute characteristic that cannot be measured in degrees [10].
Due to this most rigid definition, rarely if ever is it possible to label a naturally formed
figure as symmetrical [10]. As the images to be analyzed are of the human body, it is
safe to assume that all the figures will be asymmetric. As symmetry cannot be
measured, the symmetry metric used in this algorithm is the number of rotational
symmetries identified with a 10% tolerance for imperfection. As such, the symmetries
detected and numbered will not be perfectly symmetrical.

In examining skin blemishes, rotation and reflection symmetry is of greater
relevance. Two of the more recent rotation/reflection symmetry detection algorithms are
Loy and Eklundh’s Detecting symmetry and symmetric constellations of features [18]
and Prasad and Davis’ Detection rotational symmetries [28]. Loy and Eklundh’s
algorithm is feature based; it uses pairwise matching and voting for symmetry foci in a
Hough transform to identify asymmetry. Prasad and Davis created an algorithm that
filters in an input color image into a gradient vector flow field, extracting and matching
the features into the gradient vector flow field, using a voting scheme for symmetry

detection.
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A comparative analysis of both algorithms [4] shows that the first algorithm has a
higher sensitivity rate than the second; however it also presents very high false-positive
rates which are of serious consequence in the medical field.

Tom Gibara’s Symmetry Detection Algorithm [9] provides a method to measure
asymmetry using a comparative threshold to identify rotational symmetries, more easily
applicable to the analysis of the skin blemishes.

The algorithm proceeds as follows:

Identify the centroid of the object.

Measure the object radius (distance from centroid to most distant object pixel).
Choose a set of circles centered on the centroid with radius less than the object
radius.

4. Sample the image at a fixed angular resolution (an even number of equiangular
points) to create a vector of pixel values for each circle.

5. 'Convolve' each vector with itself to create a new set of vectors. These loosely
measure the reflectional symmetry across the angle associated with each
element.

6. Sum all of the resulting vectors to obtain an overall symmetry score for each angle
considered.

7. Disregard any angle that does not exceed a predetermined threshold and which is
not a local maximum.

8. Of the remaining angles, calculate the score-weighted average of adjacent angles
(subject to a predefined threshold).

9. The resulting angles, together with the centroid, define a set of axes along which

reflectional symmetry is high.

Source: GIBARA, TOM. [9]

Before running the Symmetry Detector on the images, it is necessary to delimit
the region to be examined. The border traced by the Canny Edge Detector will likely not
provide a continuous contour for images of melanoma lesions as they are generally
multi-colored and without distinct borders (See Figure 10). As it happens, there is no

guarantee that even the analysis of benign lesions will result in a continuous contour.
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The solution to this issue is found in Yuri Pourre’s implementation of the Quick
Hull algorithm [27], which draws the smallest polygon possible given a set of
coordinates. Once the Canny Edge Detector is run on the image, the resulting list of

coordinates of the detected edge pixels is fed into the Quick Hull program.

Figure 11 - Polygon containing the skin lesion: Melanoma and Neoplasm

Source: Testing performed on March 9th, 2014.
An image with the polygon outline is then filled in and converted to grayscale for

compatibility with Gibara’s Symmetry Detector algorithm. The important algorithm
parameters [9] are Angular Resolution, Angular Aliasing, Radius Count (‘Radii’ in the
sample output in Figure 12), and Threshold. The Angular Resolution is the number of
sample arcs in the circle. Angular Aliasing is the smallest angle permitted between
identified axes of symmetry. Angles closer together than this value are combined into a
single angle. Radii indicates the number of different radii at which samples are taken.
Threshold is the proportion of the maximum possible score that an angle must obtain to
be considered. Once the detector is run, a summary of the execution is displayed. The
above parameters and their respective values are listed. Blue pixels indicate pixels
identified with the object, in this case the polygon surrounding the skin lesion. The
green 'plus' indicates the position of the centroid, currently not visible due to the many
traced lines of reflectional symmetry. The green 'cross' indicates a pixel at maximum
distance from the centroid. Green circles indicate the circles from which samples of
image data were taken. Green lines indicate the lines of reflectional symmetry identified
by the algorithm. The array of numbers in between the square brackets indicate the

location of the symmetries identified, indicating the amount of symmetries identified.
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Figure 12 - Summary of Symmetry Detector results: Melanoma and Neoplasm

Angular Resolution: 64
Angular Aliasing: 047
Max Radius: 216.6
Threshold:|0.90

Radii: 10

Symmetry: (3

Symmetry: (207.6,197.3) [-2.233,-0.712)]

Source: Testing performed on March 9th, 2014.

5.2.2 B - Border Irregularity Metric
Melanomas may have borders that are vaguely defined. Growths with irregular,

notched or scalloped borders need to be examined by a doctor [32].

Staunton and Ma’s analysis of border irregularity used both statistical and
geometrical measures of the structural component of the skin lesion. To observe the
added value of removing the textural component from the calculation and the utilization
of statistical measures in addition to geometrical, a simple geometric border irregularity
metric was developed. Succinctly, it is the coefficient of variance of the lesion’s radii.
This was done in Staunton and Ma’s algorithm, however the calculation was performed
on the extracted structural component; in this metric all edges detected from the lesion
are used, both structural and textural. The algorithm to obtain the simple border
irregularity metric is detailed below:

1. A list of coordinates of the lesion’s border is obtained from the Canny Edge
Detector;

2. The centroid of the lesion would be calculated by finding the mean x and y
values; however, as the contour of melanoma lesions is not continuous, it was
necessary to correct this formula. The coordinates of the centroid are the minimum

value x and y plus an offset of the difference between the maximum and minimum
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value of x and y divided by 2.

Co=Xp+(xy —X)/2 Cy=y,+ Oy —y2

3. The mean radius is obtained by calculating the average of the euclidean
distance between the centroid and each pointin the list of border coordinates;

4. The standard deviation is given by

o=~ [L fi(ri -7°

with n as the number of coordinate pairs (points) in the list, r;, as the radius at point
i and 7 as the mean radius. Bias correction is unnecessary given the sample is
equal to the population.

5. Obtain the coefficient of variance given by

c, = ﬁ

being that u is the mean radius calculated in step 3.

An example of the calculated metric is displayed in Figure 13, for both a benign

neoplasm and melanoma.

Figure 13 - Comparison of simple border irregularity metric

[

=

XSRS
Image of a benign growth and the Image of a melanoma lesion and the
tracing in white of the detected tracing in white of the detected edge
edge and centroid. and centroid.
Border Irregularity metric: 0.107 Border Irregularity metric: 0.132

Source: Testing performed on March 5th, 2014.
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5.2.3 C - Color Variegation Metric

Multiple colors or uneven distribution of color may indicate cancer. [32]

Depending on the resolution and lighting of the image taken of the skin lesion,
color variance may be noticeable even in benign lesions. This makes it necessary once
again to measure the difference between colors in the lesion and compare this
difference to a defined threshold. The difference between colors is represented by
Delta-E, a metric established by the International Commission on lllumination (CIE) to
quantify color differences [33]. The first Delta-E formula was developed in 1976; since
then more sophisticated formulae have been developed and approved by CIE [33]. As
the subsequent Delta-E versions are of a more complex nature and consequentially
more computationally expensive, the 1976 CIELAB is used in this study. A suggestion
of ongoing work is to experiment using the other Delta-E formulae to determine whether
there is significant increase in efficiency in analyzing the color variegation of skin
lesions. Using the CIELAB, the algorithm is quite straightforward:

1. Identify lesion borders within the image using the Canny edge detector;
2. Delimit a region to analyze color variegation including all detected edges;
3. Calculate the average color of the lesion;
4. Convert the average color of the lesion from RGB to L*a*b*;
5. Iterate through each pixel in the delimited region;

5.1 Convert the color of the pixel from RGB to L*a*b*;

5.2 Calculate the CIELAB Delta-E of the pixel color and average color;
6. Return the average Delta-E of the region.

Yuri Pourre’s implementation of the Quick Hull algorithm was used. In addition to
this, Pourre contributed with a function to determine the average color of a given region.
In sum, the color variegation metric is the average Delta-E of each pixel in the lesion

compared to the average color of the lesion.

Figure 14 - Comparison of Melanoma and Neoplasm Average Delta-E

Avg Delta-E: 33.11 8 ke Avg Delta-E: 17.2

o

Source: Testing performed on May 2nd, 2014.
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5.2.4 D - Diameter greater than 6mm

A skin growth's large size may be an indication of cancer. [32]

The schedule limitations of this project difficulted the development of an
algorithm to measure the lesion diameter. As there is potential in exploring the use of
lesion diameter in image analysis, a suggested method is described to obtain this
metric.

This final criteria presents a challenge for the application of computerized image
analysis; the images will be taken at different ranges with no comparative figure,
impairing an accurate calculation of real size. A proposed solution is to identify the
pores in the image and measure the average distance between them in pixels; this
would provide a scale of the lesion’s diameter. An adaptation of Q. Zhang and T.
Whangbo’s Skin Pores Detection Algorithm [31] could be implemented to find the
pores in the image and note their coordinates so as to determine the distance between
them. The algorithm is based on image segmentation. A preprocessing algorithm to
balance the illumination of the image must be run before the pore detection algorithm.
The Global Luminance Proportion algorithm is noted below.

Using the original image of MxN size:

1. a. Calculate the average luminance of the image;

b. Split the image S into V sub-blocks, calculating the average luminance;

c. Obtain luminance difference matrix D;
2. Interpolation algorithm for matrix D until element number in matrix equals MxN;
3. Merge matrix D and original image S into new image sized MxN.

When the image has balanced luminance, the segmentation is performed using
the Fuzzy C-Means Algorithm. After this segmentation, pixels in the image are labeled
to 8 connectivity and skin pores can be classified from the 8-connectivity labeled image

by calculating the quadratic moment and the ratio between row and column moments.
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6. ANALYSIS

6.1 Dataset

The images used in training and testing the classifier were obtained from the
Dermatlas Interactive Dermatology Atlas and the records of Dr. Jefferson B. Louback
[17] and Dr. Ricardo Barbosa Lima [16], a total of 70 images. A total of 32 of the images
are of malignant melanomas and 38 are of various types of benign neoplasms. The
images from Dermatlas are from various sources, among them both organizations and
medical professionals. To provide a reference to the image’s source, each image ID (file
name) contains a specific prefix: RB for Ricardo Barbosa Lima M.D.; JL for Jefferson
Louback M.D; AC for Armand Cognetta, M.D.; RU for Richard Usatine, M.D.; SCF for
Skin Cancer Foundation; SS for Skin Surgery: A Practical Guide.

The images from Dermatlas had a numerical ID; this number is maintained in the
dataset. Dr. Lima and Dr. Louback’s records also were numbered and these numbers
were also maintained. Images of malignant lesions is marked with an ‘M’ and images of
benign lesions with an ‘N’. An example of the ID of an image of a malignant lesion from
Dr. Lima’s records is “M142_RB”: M for malignant, 142 is the numbering provided by Dr.
Lima’s records, RB is his initials. All of the images used were submitted for diagnosis
confirmation to Dr. Louback.

There is a total of 17 features in the algorithms used, these being Staunton and
Ma’s 14 features and the 3 additional ones for Asymmetry, Border irregularity and Color
variegation. Unfortunately one of Staunton and Ma’s features, the Irregularity Measure
based on the approximate data signal, was not validated within the project’s time frame
and consequently was not included in the final analysis so as to avoid the use of a

component that could possibly not be true to the original algorithm.

6.2 Pre-Processing
To reduce the amount of data to be processed and expedite the algorithms’
execution, the images were cropped to the minimum size while still containing the

lesion in its entirety. This was performed manually.
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During the delimitation of the lesion within the image using the Canny Edge
Detector, it was observed that a single set of low and high thresholds was not enough to
cater to all the images in the database. When an image was slightly blurred or when the
lesion, regardless of being malignant or benign, presented similar color to the
surrounding skin, the Canny Edge Detector failed to identify edges in the image.
Lowering the threshold was not an option as that added noise and detected skin texture
in other images. To solve this problem, two sets of thresholds were used: a standard set
of [6, 13] for the low and high threshold respectively, and a second set of [2, 8] for
images that failed to return more than 70 edge coordinates. Of the 70 images analyzed,
12 utilized the second set of thresholds. These thresholds were established after
successive tests and manual examinations of the results; there is no evidence that they
are the optimal selection. Thresholds that result in more accurate discrimination are
likely to increase the overall effectiveness of the analysis algorithms as they contribute
to the correct delimitation of the lesion that is then analyzed to reach a diagnosis,
eliminating unnecessary and possibly misleading parts of the image not pertaining to
the lesion. Identifying optimal thresholds for singling out the skin lesion from an image

may be a valid alternative to bettering the performance of the algorithms.

6.3 Data Analysis

To perform the classification, the Waikato Environment for Knowledge Analysis'
(Weka) software was used. Developed at the university of Waikato, it contains a
collection of machine learning algorithms written in Java and is licensed under the GNU
General Public License.

To separate the test and training data, a percentage split of 28% was done to
emulate the optimum size of the training set determined by Staunton and Ma, which is
18 instances (half malignant, half benign) [19]. In Staunton and Ma’s study, a Back
Propagation neural network was used as the training algorithm. However, as
occasionally some features returned undefined values, a Naive Bayes classifier was

also used due to its ability in dealing with missing data [22].

! http://www.cs.waikato.ac.nz/ml/weka
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The Multilayer Perceptron (Weka’s neural net with Back Propagation) presented

better performance than the Naive Bayes classifier, as seen in Table 4.

Table 4 - BP Neural Net and Naive Bayes performance

=== BP Neural Net ===

Correctly Classified Instances 73.6842 %
Incorrectly Classified Instances  26.3158 %
=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class
0.778 0.3 0.7 0.747  true
0.7 222 0778 0.747 false

=== Naive Bayes ===

Correctly Classified Instances 70.5882 %

Incorrectly Classified Instances 29.4118 %

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class
0.556 0.125 0.833 0.639 true
0.875 0.444 0.636 0.639 false

Source: Weka classifier output

When including the simple Border irregularity metric (See section 4.3.2) in the

analysis, the accuracy was not altered, both in the BP Neural Net model and the Naive

Bayes. Figure 15 compares the added precision of the simple Border irregularity metric

(which for the remainder of the monograph is referred to as B*) and the 7 attributes with

the least precision of Staunton and Ma’s 13 features using a Naive Bayes model (The

remaining 6 presented extremely high levels of precision and could not be compared in

the same graph). Table 5 shows the relation between the features and the abbreviations

used in the graphs and dataset.

Figure 15 - Comparison of B* metric precision

Adtribute Precision

1.6

12

0.8
0.6
0.4
0.2

ME-& EE-& EE-7 EE-8

Source: Based on data from the Weka classifier

EE-9 RD-& CR-7 B*



Table 5 - Abbreviation glossary

A Asymmetry metric

B* Simple Border irregularity metric
C Color variegation metric

CR-7 Contour Roughness of sub-band 7
EE-6 Energy Entropy of sub-band 6
EE-7 Energy Entropy of sub-band 7
EE-8 Energy Entropy of sub-band 8
EE-9 Energy Entropy of sub-band 9
ME-6 Mean Energy of sub-band 6
ME-7 Mean Energy of sub-band 7
ME-8 Mean Energy of sub-band 8
RD-6 Radial Deviation of sub-band 6
UW-6 Ultimate Width of sub-band 6
UW-7 Ultimate Width of sub-band 7
Uw-9 Ultimate Width of sub-band 9
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A second round of analysis was performed, this time including the Asymmetry

and Color variegation metric. This addition increased the performance of both the BP

neural net and Naive Bayes model. The specifics of each classification are listed in

Table 6 and Table 7.

Table 6 - Comparison: StauntonMa + A + C with BP Neural Net

StauntonMa

=== BP Neural Net ===

Correctly Classified Instances 73.6842 %
Incorrectly Classified Instances  26.3158 %

=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision ROC Area Class

StauntonMa + A +C

=== BP Neural Net ===

Correctly Classified Instances 76.3158 %
Incorrectly Classified Instances  23.684 %

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class

0.778 0.3 0.7 0.747  true 0.833 0.3 0.714 0.803  true
0.7 0.222 0.778 0.747 false 0.7 0.167 0.824 0.803 false
Source: Excerpts of Weka classifier output
Table 7 - Comparison: StauntonMa + A + C with Naive Bayes
StauntonMA StauntonMa +A +C
=== Naive Bayes === === Naive Bayes ===
Correctly Classified Instances 70.5882 % Correctly Classified Instances 76.4706 %
Incorrectly Classified Instances 29.4118 % Incorrectly Classified Instances 23.5294 %

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class
0.556 0.125 0.833 0.639 true
0.875 0.444 0.636 0.639 false

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision ROC Area Class
0.667 0.125 0.857 0.806 true
0.875 0.333 0.7 0.806 false

Source: Excerpts of Weka classifier output
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6.4 Analysis Conclusions

A significant disclaimer to the findings of this experiment is that none of the
images of skin lesion in the dataset were of darkly pigmented skin. It has not been
determined whether this would affect the outcome of the algorithm. Additionally, there
are abnormalities in both benign neoplasms and malignant melanomas that are likely to
be misleading. According to Dr. Jefferson B. Louback [17], the Amelanotic Melanoma
variety can be the same color as the surrounding skin, and as such would possibly not
be detected by the algorithm. The Congenital Melanocytic Nevus, in layman’s terms, a
birthmark, often doesn’t adhere to the typical benign neoplasm traits. Samples of these
specific variations were also not in the dataset, although a series of atypical nevi
(benign neoplasms) were included. In sum, digital image analysis can be an effective
identifier of a wide range of melanomas and may contribute to an early diagnosis.
However, it remains necessary to obtain a medical confirmation.

Based on the analysis performed, it is safe to conclude that in measuring lesion
border irregularity to diagnose melanoma it is essential to extract the structural
components, as proposed by Staunton and Ma [19]. As seen in Table 4, a geometric
border irregularity measure based on raw data containing both structural and textural
components did not add accuracy due to insignificant precision. It is curious to observe
in Figure 15 how the B* metric fared in comparison to RD-6 and CR-7; B* being the
geometric irregularity measure of raw data with precision of 0.008 and RD-6 and CR-7
being geometric irregularity measures of only structural data with precision of 1.46 and
0.035.

Although the performance of Staunton and Ma’s algorithm is certainly
noteworthy, it was observed that the inclusion of metrics for asymmetry and color
variegation added substantial precision. In Tables 6 and 7 we see the accuracy leap
from from 73.68% to 76.31% when using a BP neural net, and from 70.58% to 76.47%
using Naive Bayes. There was also an increase in the area under the ROC curve of
7.5% and 25% respectively. It is therefore suggested that algorithms to diagnose
melanoma by studying digital images of skin lesions only stand to gain by using metrics

for Asymmetry, Border irregularity, and Color variegation in conjunction.
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7. CONCLUSION

This study comprises two leading objectives: to assess the effectiveness of
certain image analysis techniques in the detection of melanoma and to examine the
influence of combining these techniques in an effort to improve overall performance.
The proposed approach was to use distinct algorithms that focused on one of the four
symptomatic traits in melanoma which are asymmetry, border irregularity, color
variegation and diameter size.

The central component of the study began with the re-implementation of Li Ma
and Richard Staunton’s algorithm for skin lesion border irregularity analysis. The
original software written in Matlab for their algorithm had previously been lost; one of the
deliverables vyielded by this project was the restoration of the algorithm’s
implementation in Octave, a Matlab compatible language. Furthermore, Ma and
Staunton’s algorithm was run on an entirely new image database, confirming the
reported accuracy indices.

Three additional algorithms were developed and implemented in Java to create
three metrics: a simple border irregularity metric, an asymmetry metric and a color
variegation metric. The simple border irregularity metric is a geometric descriptor such
as some of the descriptors in Ma and Staunton’s algorithm. The core difference is the
algorithm is run on data with both textural and structural components. When used in
conjunction with Ma and Staunton’s algorithm, this metric caused no significant
increase in precision, demonstrating the positive impact of segregating the structural
components from the image of the skin lesion during analysis.

The remaining two metrics, asymmetry and color variegation, produced a
positive and notable contribution to Ma and Staunton’s algorithm. The additional metrics
improved both the sensitivity and specificity levels, decreasing the error rate. This
reinforces the concept of simulating the approach used in presential consults that
observe all identifying traits to determine the potential presence of melanoma.

Future work includes the development of an algorithm for measuring the
diameter of skin lesions. Another line of research that could prove a worthy pursuit is the

enhancement of the methods used to delimitate the skin lesion in the digital image. This
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is likely to have a major impact on the effectiveness of algorithms that examine all four
traits, as well as on some counts increase efficiency. The efficiency would increase
when the optimal or near-optimal delimitation of the skin lesion results in a reduced
region of analysis. The border detection method used is not discriminative enough to
avoid the wrongful inclusion of some portions of skin or wrongful exclusion of portions of
the lesion. As such, the effectiveness is prone to increase in the analysis of all four
traits; in asymmetry, border irregularity and diameter size, if the shape of the region
analyzed corresponds neatly to the lesion, there are higher chances of an accurate
classification. With regard to color variegation, the improved delimitation is capable of
decreasing the false positive rate. This is because the inclusion of skin in the analysis
as opposed to only the lesion would indicate a high level of color variegation due to the
likely contrast between the color of the skin and color of the lesion. A high level of color
variegation is one of the indicators of malignancy.

Clearly, there is much potential in using image analysis algorithms to detect the
possibility of malignancy in digital images of skin lesions. Current algorithms present
noteworthy accuracy levels and can be further enhanced. It is suggested that image
analysis algorithms would in fact be a feasible solution to promote early detection of
melanoma, being of great use in situations where access to specialized medical care is

limited.
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